Existence of solutions for a class of fractional Kirchhoff variational inequality

被引:0
|
作者
Deng, Shenbing [1 ]
Luo, Wenshan [1 ]
Ledesma, Cesar E. Torres [2 ]
Quiroz, George W. Alama [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Nacl Trujillo, Dept Matemat, Inst Invest Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[3] Univ Privada Norte, Fac Estudios Gen, UPN Campus Virtual, Urb San Isidro 2da Etapa, Trujillo 13006, Peru
来源
基金
中国国家自然科学基金;
关键词
Fractional Kirchhoff variational inequality; variational methods; critical nonlinearity; MULTIPLE POSITIVE SOLUTIONS; CRITICAL-POINT THEORY; OBSTACLE PROBLEM; REGULARITY; STABILITY; EQUATION; DRIVEN;
D O I
10.4171/ZAA/1742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following fractional Kirchhoff variational inequality: (a + b[u] (2) ) integral(3)(R) ( - Delta) (s/2) u( - Delta)( s /2 )(v - u) dx + integral(R) 3 (1 + lambda V (x))u(v - u) dx >= integral(R)3 f (u)(v - u) dx V v E K , where s is an element of (( 3)/ (4) , 1) , lambda > 0 . In this paper, by applying penalization techniques from Bensoussan and Lions (1978) combined with mountain pass theorem, we show the existence and concentration behavior of positive solution to the cited variational inequality. This result extend some results established by Alves, Barros and Torres [J. Math. Anal. Appl. 494 (2021)] to the fractional case.
引用
下载
收藏
页码:149 / 168
页数:20
相关论文
共 50 条
  • [31] EXISTENCE AND NONUNIQUENESS OF SOLUTIONS OF A NONCOERCIVE ELLIPTIC VARIATIONAL INEQUALITY
    SZULKIN, A
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 413 - 418
  • [32] Existence and uniqueness of solutions of the generalized polynomial variational inequality
    Wang, Jing
    Huang, Zheng-Hai
    Xu, Yang
    OPTIMIZATION LETTERS, 2020, 14 (06) : 1571 - 1582
  • [33] Existence and stability of solutions to inverse variational inequality problems
    Yu HAN
    Nanjing HUANG
    Jue LU
    Yibin XIAO
    Applied Mathematics and Mechanics(English Edition), 2017, 38 (05) : 749 - 764
  • [34] Existence and uniqueness of solutions of the generalized polynomial variational inequality
    Jing Wang
    Zheng-Hai Huang
    Yang Xu
    Optimization Letters, 2020, 14 : 1571 - 1582
  • [35] Existence and stability of solutions to inverse variational inequality problems
    Yu Han
    Nanjing Huang
    Jue Lu
    Yibin Xiao
    Applied Mathematics and Mechanics, 2017, 38 : 749 - 764
  • [36] EXISTENCE OF SOLUTIONS FOR A VARIATIONAL INEQUALITY ON THE HALF-LINE
    Frites, O.
    Moussaoui, T.
    O'Regan, D.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (01): : 223 - 237
  • [37] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A GENERAL NONLINEAR VARIATIONAL INEQUALITY
    DING, XP
    TARAFDAR, E
    APPLIED MATHEMATICS LETTERS, 1995, 8 (01) : 31 - 36
  • [38] Existence of Solutions for a Class of Fractional Kirchhoff-type Systems in RN with Non-standard Growth
    Azroul, Elhoussine
    Boumazourh, Athmane
    Nguyen Thanh Chung
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (05): : 981 - 1006
  • [39] Existence of solutions for a class of elliptic variational inequalities
    Zhou, YY
    Huang, YS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (01) : 187 - 195
  • [40] Study of the existence and uniqueness of solutions for a class of Kirchhoff-type variational inequalities involving using Young measures
    Mouad Allalou
    Abderrahmane Raji
    Khalid Hilal
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1301 - 1320