Existence of solutions for a class of fractional Kirchhoff variational inequality

被引:0
|
作者
Deng, Shenbing [1 ]
Luo, Wenshan [1 ]
Ledesma, Cesar E. Torres [2 ]
Quiroz, George W. Alama [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Nacl Trujillo, Dept Matemat, Inst Invest Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[3] Univ Privada Norte, Fac Estudios Gen, UPN Campus Virtual, Urb San Isidro 2da Etapa, Trujillo 13006, Peru
来源
基金
中国国家自然科学基金;
关键词
Fractional Kirchhoff variational inequality; variational methods; critical nonlinearity; MULTIPLE POSITIVE SOLUTIONS; CRITICAL-POINT THEORY; OBSTACLE PROBLEM; REGULARITY; STABILITY; EQUATION; DRIVEN;
D O I
10.4171/ZAA/1742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following fractional Kirchhoff variational inequality: (a + b[u] (2) ) integral(3)(R) ( - Delta) (s/2) u( - Delta)( s /2 )(v - u) dx + integral(R) 3 (1 + lambda V (x))u(v - u) dx >= integral(R)3 f (u)(v - u) dx V v E K , where s is an element of (( 3)/ (4) , 1) , lambda > 0 . In this paper, by applying penalization techniques from Bensoussan and Lions (1978) combined with mountain pass theorem, we show the existence and concentration behavior of positive solution to the cited variational inequality. This result extend some results established by Alves, Barros and Torres [J. Math. Anal. Appl. 494 (2021)] to the fractional case.
引用
下载
收藏
页码:149 / 168
页数:20
相关论文
共 50 条
  • [21] Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation
    Xiaoming He
    Wenming Zou
    manuscripta mathematica, 2019, 158 : 159 - 203
  • [22] Multiplicity of nontrivial solutions for a class of fractional Kirchhoff equations
    Shao, Liuyang
    Chen, Haibo
    Pang, Yicheng
    Wang, Yingmin
    AIMS MATHEMATICS, 2024, 9 (02): : 4135 - 4160
  • [23] Existence of nontrivial solutions to fractional Kirchhoff double phase problems
    Sousa, J. Vanterler da C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (02):
  • [24] Existence of solutions for a critical fractional Kirchhoff type problem in RN
    Xiang, MingQi
    Zhang, BinLin
    Qiu, Hong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (09) : 1647 - 1660
  • [25] A PRIORI BOUNDS AND EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL KIRCHHOFF EQUATIONS
    Li, Pengfei
    Xie, Junhui
    Mu, Dan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (01) : 203 - 220
  • [26] Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation
    He, Xiaoming
    Zou, Wenming
    MANUSCRIPTA MATHEMATICA, 2019, 158 (1-2) : 159 - 203
  • [27] Existence of nontrivial solutions to fractional Kirchhoff double phase problems
    J. Vanterler da C. Sousa
    Computational and Applied Mathematics, 2024, 43
  • [28] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [29] Existence and stability of solutions to inverse variational inequality problems
    Han, Yu
    Huang, Nanjing
    Lu, Jue
    Xiao, Yibin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2017, 38 (05) : 749 - 764
  • [30] Variational inequality problems with a continuum of solutions: Existence and computation
    Herings, PJJ
    Talman, D
    Yang, ZF
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 39 (06) : 1852 - 1873