Existence of positive solutions for fractional Kirchhoff equation

被引:0
|
作者
Ke Wu
Guangze Gu
机构
[1] Yunnan Normal University,Department of Mathematics
关键词
Uniqueness; Positive solutions; Nonlocal operator; 74G30; 35B09; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following Kirchhoff equation involving fractional Laplacian in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}[graphic not available: see fulltext] where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document}, b,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\mu >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, and (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian with order s. By reducing (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} to an equivalent system, we obtain the existence of a positive solution of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} with general nonlinearities. The positive solution is unique if g(u)=|u|p-1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u)=|u|^{p-1}u$$\end{document}, 1<p<N+2sN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\frac{N+2s}{N-2s}$$\end{document}. Moreover, if the function g is odd, the existence of infinitely many (sign-changing) solutions is concluded. As we shall see, for the case where 0<s≤N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s\le \frac{N}{4}$$\end{document}, a necessary condition of existence of nontrivial solutions of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} is that b is small. Our method works well for the so-called degenerate case a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Existence of positive solutions for fractional Kirchhoff equation
    Wu, Ke
    Gu, Guangze
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [2] Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Yang, Xianyong
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) : 717 - 730
  • [3] On existence and concentration of positive solutions for a fractional Kirchhoff equation with critical exponential growth
    Pei, Ruichang
    Zhang, Jihui
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (01) : 176 - 198
  • [4] The existence of normalized solutions to the fractional Kirchhoff equation with potentials
    Ji, Peng
    Chen, Fangqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [5] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei LI
    Jun-hui XIE
    Dan MU
    Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 225 - 240
  • [6] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei Li
    Jun-hui Xie
    Dan Mu
    Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 225 - 240
  • [7] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Li, Peng-fei
    Xie, Jun-hui
    Mu, Dan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 225 - 240
  • [8] Nonexistence and existence of positive solutions for the Kirchhoff type equation
    Sun, Mingzheng
    Yang, Ziliang
    Cai, Hongrui
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 202 - 207
  • [9] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [10] A PRIORI BOUNDS AND EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL KIRCHHOFF EQUATIONS
    Li, Pengfei
    Xie, Junhui
    Mu, Dan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (01) : 203 - 220