Existence of positive solutions for fractional Kirchhoff equation

被引:0
|
作者
Ke Wu
Guangze Gu
机构
[1] Yunnan Normal University,Department of Mathematics
关键词
Uniqueness; Positive solutions; Nonlocal operator; 74G30; 35B09; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following Kirchhoff equation involving fractional Laplacian in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}[graphic not available: see fulltext] where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document}, b,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\mu >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, and (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian with order s. By reducing (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} to an equivalent system, we obtain the existence of a positive solution of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} with general nonlinearities. The positive solution is unique if g(u)=|u|p-1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u)=|u|^{p-1}u$$\end{document}, 1<p<N+2sN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\frac{N+2s}{N-2s}$$\end{document}. Moreover, if the function g is odd, the existence of infinitely many (sign-changing) solutions is concluded. As we shall see, for the case where 0<s≤N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s\le \frac{N}{4}$$\end{document}, a necessary condition of existence of nontrivial solutions of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} is that b is small. Our method works well for the so-called degenerate case a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation
    Lin Xu
    Feng Li
    Qilin Xie
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [12] Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation
    Xu, Lin
    Li, Feng
    Xie, Qilin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [13] Positive and negative solutions for the nonlinear fractional Kirchhoff equation in RN
    Wang, Yang
    Liu, Yansheng
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [14] Existence and bifurcation of positive solutions for fractional p$$ p $$-Kirchhoff problems
    Wang, Linlin
    Xing, Yuming
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2413 - 2432
  • [15] EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION
    Maagli, Habib
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [16] The existence of positive solutions for the singular fractional differential equation
    Jiang W.
    Huang X.
    Guo W.
    Zhang Q.
    Jiang, W. (weihuajiang@hebust.edu.cn), 1600, Springer Verlag (41): : 171 - 182
  • [17] Existence of positive solutions for Caputo fractional difference equation
    Chen, Huiqin
    Jin, Zhen
    Kang, Shugui
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 12
  • [18] Existence of positive solutions for Caputo fractional difference equation
    Huiqin Chen
    Zhen Jin
    Shugui Kang
    Advances in Difference Equations, 2015
  • [19] The existence and nonexistence of positive solutions for a singular Kirchhoff equation with convection term
    Qiu, Xiaohui
    Yan, Baoqiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (10) : 10581 - 10601
  • [20] Existence and Multiplicity of Positive Solutions to a p-Kirchhoff-Type Equation
    Li, Qi
    Han, Yuzhu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1789 - 1810