Convergence of limit shapes for 2D near-critical first-passage percolation

被引:0
|
作者
Yao, Chang -Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
First-passage percolation; Near-critical percolation; Scaling limit; Correlation length; Shape theorem; SCALING LIMITS; ENSEMBLES; EXPONENTS;
D O I
10.1214/22-AIHP1349
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli first-passage percolation on the triangular lattice in which sites have 0 and 1 passage times with probability p and 1 - p, respectively. For each p is an element of (0, pc), let B(p) be the limit shape in the classical "shape theorem", and let L(p) be the correlation length. We show that as p up arrow pc, the rescaled limit shape L(p)-1B(p) converges to a Euclidean disk. This improves a result of Chayes et al. [J. Stat. Phys. 45 (1986) 933-951]. The proof relies on the scaling limit of near-critical percolation established by Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195-1268], and uses the construction of the collection of continuum clusters in the scaling limit introduced by Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44-89].
引用
收藏
页码:1295 / 1333
页数:39
相关论文
共 50 条