Convergence of limit shapes for 2D near-critical first-passage percolation

被引:0
|
作者
Yao, Chang -Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
First-passage percolation; Near-critical percolation; Scaling limit; Correlation length; Shape theorem; SCALING LIMITS; ENSEMBLES; EXPONENTS;
D O I
10.1214/22-AIHP1349
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli first-passage percolation on the triangular lattice in which sites have 0 and 1 passage times with probability p and 1 - p, respectively. For each p is an element of (0, pc), let B(p) be the limit shape in the classical "shape theorem", and let L(p) be the correlation length. We show that as p up arrow pc, the rescaled limit shape L(p)-1B(p) converges to a Euclidean disk. This improves a result of Chayes et al. [J. Stat. Phys. 45 (1986) 933-951]. The proof relies on the scaling limit of near-critical percolation established by Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195-1268], and uses the construction of the collection of continuum clusters in the scaling limit introduced by Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44-89].
引用
收藏
页码:1295 / 1333
页数:39
相关论文
共 50 条
  • [41] Anchored critical percolation clusters and 2D electrostatics
    Kleban, Peter
    Simmons, Jacob J. H.
    Ziff, Robert M.
    PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [42] Continuum Nonsimple Loops and 2D Critical Percolation
    Federico Camia
    Charles M. Newman
    Journal of Statistical Physics, 2004, 116 : 157 - 173
  • [43] Factorization formulas for 2D critical percolation, revisited
    Conijn, R. P.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4102 - 4116
  • [44] Logarithmic correlation functions in 2D critical percolation
    Camia, Federico
    Feng, Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [45] ORIENTED FIRST PASSAGE PERCOLATION IN THE MEAN FIELD LIMIT, 2. THE EXTREMAL PROCESS
    Kistler, Nicola
    Schertzer, Adrien
    Schmidt, Marius A.
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (02): : 788 - 811
  • [46] From 2D to 3D: Critical Casimir interactions and phase behavior of colloidal hard spheres in a near-critical solvent
    Tasios, Nikos
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (13):
  • [47] On the density of 2D critical percolation gaskets and anchored clusters
    Camia, Federico
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (02)
  • [48] Critical percolation in the dynamics of the 2D ferromagnetic Ising model
    Blanchard, Thibault
    Cugliandolo, Leticia F.
    Picco, Marco
    Tartaglia, Alessandro
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [49] ON CARDYS FORMULA FOR THE CRITICAL CROSSING PROBABILITY IN 2D PERCOLATION
    ZIFF, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : 1249 - 1255
  • [50] Limit of the Wulff crystal when approaching criticality for isoperimetry in 2D percolation
    Yao, Chang-Long
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28