Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks

被引:2
|
作者
Liu, J. Z. [1 ]
Qu, Q. L. [1 ]
Yang, H. Y. [1 ]
Zhang, J. M. [1 ]
Liu, Z. D. [1 ]
机构
[1] State Grid Qinghai Elect Power Co, Elect Power Res Inst, Xining 810008, Qinghai, Peoples R China
关键词
Distributed power supply; Distribution network; Condor search algorithm; Deep residual network; Residual shrinkage module;
D O I
10.15837/ijccc.2024.4.6607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two -stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Trace-based Intelligent Fault Diagnosis for Microservices with Deep Learning
    Chen, Hao
    Wei, Kegang
    Li, An
    Wang, Tao
    Zhang, Wenbo
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 884 - 893
  • [22] Ensemble deep learning-based fault diagnosis of rotor bearing systems
    Ma, Sai
    Chu, Fulei
    COMPUTERS IN INDUSTRY, 2019, 105 : 143 - 152
  • [23] A Deep Learning-Based Fault Diagnosis of Leader-Following Systems
    Liu, Xiaoxu
    Lu, Xin
    Gao, Zhiwei
    IEEE ACCESS, 2022, 10 : 18695 - 18706
  • [24] Deep learning-based fault diagnosis of planetary gearbox: A systematic review
    Ahmad, Hassaan
    Cheng, Wei
    Xing, Ji
    Wang, Wentao
    Du, Shuhong
    Li, Linying
    Zhang, Rongyong
    Chen, Xuefeng
    Lu, Jinqi
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 730 - 745
  • [25] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [26] Deep Transfer Learning-based Fault Diagnosis of Spacecraft Attitude System
    Tang, Yifan
    Dou, Liqian
    Zhang, Ruilong
    Zhang, Xiuyun
    Liu, Wenjing
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4072 - 4077
  • [27] Deep residual learning-based fault diagnosis method for rotating machinery
    Zhang, Wei
    Li, Xiang
    Ding, Qian
    ISA TRANSACTIONS, 2019, 95 : 295 - 305
  • [28] Deep Learning-based Framework for Multi-Fault Diagnosis in Self-Healing Cellular Networks
    Riaz, Muhammad Sajid
    Qureshi, Haneya Naeem
    Masood, Usama
    Rizwan, Ali
    Abu-Dayya, Adnan
    Imran, Ali
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 746 - 751
  • [29] Ensemble learning-based intelligent fault diagnosis method using feature partitioning
    Zhu, Yongsheng
    Zhu, Xiaoran
    Wang, Jing
    JOURNAL OF VIBROENGINEERING, 2013, 15 (03) : 1378 - 1392
  • [30] A Transient Feature Learning-Based Intelligent Fault Diagnosis Method for Planetary Gearboxes
    Qin, Bo
    Li, Zixian
    Qin, Yan
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2020, 66 (06): : 385 - 394