A Deep Learning-Based Fault Diagnosis of Leader-Following Systems

被引:5
|
作者
Liu, Xiaoxu [1 ]
Lu, Xin [1 ]
Gao, Zhiwei [2 ]
机构
[1] Shenzhen Technol Univ, Sino German Coll Intelligent Mfg, Shenzhen 518118, Peoples R China
[2] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Fault diagnosis; Sensors; Multi-agent systems; Actuators; Protocols; Deep learning; Training; multisensor data fusion; fault diagnosis; leader-following system; convolution neural network; data-driven; distributed; batch normalization; image fusion; sliding window data sampling; MULTIAGENT SYSTEMS; TOLERANT CONTROL;
D O I
10.1109/ACCESS.2022.3151155
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a multisensor data fusion-based deep learning algorithm to locate and classify faults in a leader-following multiagent system. First, sequences of one-dimensional data collected from multiple sensors of followers are fused into a two-dimensional image. Then, the image is employed to train a convolution neural network with a batch normalisation layer. The trained network can locate and classify three typical fault types: the actuator limitation fault, the sensor failure and the communication failure. Moreover, faults can exist in both leaders and followers, and the faults in leaders can be identified through data from followers, indicating that the developed deep learning fault diagnosis is distributed. The effectiveness of the deep learning-based fault diagnosis algorithm is demonstrated via Quanser Servo 2 rotating inverted pendulums with a leader-follower protocol. From the experimental results, the fault classification accuracy can reach 98.9%.
引用
收藏
页码:18695 / 18706
页数:12
相关论文
共 50 条
  • [1] Ensemble deep learning-based fault diagnosis of rotor bearing systems
    Ma, Sai
    Chu, Fulei
    COMPUTERS IN INDUSTRY, 2019, 105 : 143 - 152
  • [2] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [3] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [4] A New BRB-Based Fault Diagnosis Method for Leader-Following Multi-Agent Systems with Communication Interferences
    Wang, Ziyi
    Ji, Wenqiang
    Yang, Ruohan
    2024 3RD CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, FASTA 2024, 2024, : 302 - 307
  • [5] Deep Learning-Based Fault Diagnosis of Photovoltaic Systems: A Comprehensive Review and Enhancement Prospects
    Mansouri, Majdi
    Trabelsi, Mohamed
    Nounou, Hazem
    Nounou, Mohamed
    IEEE ACCESS, 2021, 9 : 126286 - 126306
  • [6] Ensemble learning-based HVDC systems fault diagnosis
    Li Q.
    Chen Q.
    Wu J.
    Peng G.
    Huang X.
    Li Z.
    Yang B.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (16): : 168 - 178
  • [7] Deep Learning-Based Fault Diagnosis for Marine Centrifugal Fan
    Li, Congyue
    Hu, Yihuai
    Jiang, Jiawei
    Yan, Guohua
    POLISH MARITIME RESEARCH, 2023, 30 (01) : 112 - 120
  • [8] BRB-based distributed fault diagnosis for leader-following consensus of multi-agent systems under noisy measurement
    Yang, Ruohan
    Feng, Zhichao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1873 - 1878
  • [9] A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems
    Afrasiabi, Shahabodin
    Allahmoradi, Sarah
    Afrasiabi, Mousa
    Liang, Xiaodong
    Chung, C. Y.
    Aghaei, Jamshid
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2024, 11 : 583 - 594
  • [10] Fault-tolerant Consensus of Leader-following Multi-agent Systems Based on Distributed Fault Estimation Observer
    Pu Yang
    Ben Ma
    Yan Dong
    Jianwei Liu
    International Journal of Control, Automation and Systems, 2018, 16 : 2354 - 2362