Ensemble deep learning-based fault diagnosis of rotor bearing systems

被引:123
|
作者
Ma, Sai [1 ,2 ]
Chu, Fulei [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Shandong Univ, Jinan 250061, Shandong, Peoples R China
关键词
Multi-objective optimization; Ensemble learning; Deep belief network (DBN); Convolutional residual network (CRN); Deep auto-encoder (DAE); CONVOLUTIONAL NEURAL-NETWORK; NONLINEAR DYNAMIC-MODEL; SUPPORT VECTOR MACHINES; ROTATING MACHINERY; PARAMETRIC-INSTABILITY; FEATURE-EXTRACTION; SKIDDING BEHAVIOR; JEFFCOTT ROTOR; RUB; OPTIMIZATION;
D O I
10.1016/j.compind.2018.12.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For rotating machinery, early and accurate diagnosis of rotor and bearing component fault is of great significance. The classic fault diagnosis model includes two key modules, feature extraction and fault classification. In order to enhance the practicability, the deep learning models realize the end-to-end fault diagnosis by integrating this two modules, thus avoids the problems caused by the inadequate adaptability of manual designed features. However, considering the wide application scenario of fault diagnosis technology, the application scope of single deep model may have corresponding limitations. Accordingly, in this paper, an ensemble deep learning diagnosis method based on multi-objective optimization is proposed. The multi-objective optimization algorithm is used as the ensemble strategy in this method, the Convolution Residual Network (CRN), Deep Belief Network (DBN) and Deep Auto-Encoder (DAE) are weighted and integrated to realize the effective diagnosis of rotor and bearing faults for rotating machinery. The experimental results demonstrate the better adaptability of the proposed method compared to other single and ensemble deep models. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 50 条
  • [1] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [2] Ensemble learning-based HVDC systems fault diagnosis
    Li Q.
    Chen Q.
    Wu J.
    Peng G.
    Huang X.
    Li Z.
    Yang B.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (16): : 168 - 178
  • [3] Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning
    Liu, Fayou
    Li, Weijia
    Wu, Yaozhong
    He, Yuhang
    Li, Tianyun
    POLISH MARITIME RESEARCH, 2024, 31 (01) : 102 - 113
  • [4] A Deep Ensemble Learning Model for Rolling Bearing Fault Diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Li, Zhenning
    Liu, Yunpeng
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 133 - 136
  • [5] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)
  • [6] Bearing fault diagnosis method based on Gramian angular field and ensemble deep learning
    Han, Yanfang
    Li, Baozhu
    Huang, Yingkun
    Li, Liang
    JOURNAL OF VIBROENGINEERING, 2023, 25 (01) : 42 - 52
  • [7] Reliable Fault Diagnosis of Rolling Bearing Based on Ensemble Modified Deep Metric Learning
    Xu, Zengbing
    Li, Xiaojuan
    Wang, Jinxia
    Wang, Zhigang
    SHOCK AND VIBRATION, 2021, 2021
  • [8] A Deep Learning-Based Fault Diagnosis of Leader-Following Systems
    Liu, Xiaoxu
    Lu, Xin
    Gao, Zhiwei
    IEEE ACCESS, 2022, 10 : 18695 - 18706
  • [9] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [10] A Novel Ensemble Learning-Based Multisensor Information Fusion Method for Rolling Bearing Fault Diagnosis
    Tong, Jinyu
    Liu, Cang
    Bao, Jiahan
    Pan, Haiyang
    Zheng, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72