Reliable Fault Diagnosis of Rolling Bearing Based on Ensemble Modified Deep Metric Learning

被引:5
|
作者
Xu, Zengbing [1 ,2 ,3 ]
Li, Xiaojuan [1 ,2 ]
Wang, Jinxia [4 ]
Wang, Zhigang [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Minist Educ, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment Technol, Wuhan 430074, Peoples R China
[4] Rootcloud Technol Co Ltd, Changsha 410199, Peoples R China
关键词
ELEMENT BEARING; NEURAL-NETWORK;
D O I
10.1155/2021/5153751
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A novel ensemble Yu's norm-based deep metric learning (DMLYu) is proposed to diagnose the fault of rolling bearing in this paper, which can diagnose the fault classes through the information fusion method that combines the different diagnosis results produced by several Yu's norm-based deep metric learning models with different scale signals. The suggested method is composed of three steps: firstly the vibration signal is decomposed into multiple IMF components by the EEMD method, then these IMF components are input into the DMLYu models which is called the modified deep metric learning model based on Yu's norm-based similarity measure, respectively, to extract the feature parameters to diagnose the fault of rolling bearings from the different scales, and finally the final diagnosis decision is made by fusion strategy based on Bayesian belief method (BBM). At last, through a multifaceted diagnosis test of rolling bearing on different datasets, the effectiveness of the proposed ensemble DMLYu based on BBM is verified, and the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy and generalization with DMLYu based on voting method and the individual DMLYu model.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fault Diagnosis of Rolling Bearing Based on Modified Deep Metric Learning Method
    Xu, Zengbing
    Li, Xiaojuan
    Lin, Hui
    Wang, Zhigang
    Peng, Tao
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [2] A Deep Ensemble Learning Model for Rolling Bearing Fault Diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Li, Zhenning
    Liu, Yunpeng
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 133 - 136
  • [3] Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method
    Li, Zhenning
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 205 - 211
  • [4] Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion
    Ma, Jianpeng
    Li, Chengwei
    Zhang, Guangzhu
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [5] Deep Learning based End-to-End Rolling Bearing Fault Diagnosis
    Li, Yongjie
    Qiu, Bohua
    Wei, Muheng
    Sun, Wenqiushi
    Liu, Xueliang
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [6] Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network
    Wu, Zhenghong
    Jiang, Hongkai
    Zhang, Sicheng
    Wang, Xin
    Shao, Haidong
    Dou, Haoxuan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 105 - 111
  • [7] Ensemble deep learning-based fault diagnosis of rotor bearing systems
    Ma, Sai
    Chu, Fulei
    [J]. COMPUTERS IN INDUSTRY, 2019, 105 : 143 - 152
  • [8] Rolling Bearing Fault Diagnosis Using Deep Learning Network
    Tang, Shenghao
    Yuan, Yuqiu
    Lu, Li
    Li, Shuang
    Shen, Changqing
    Zhu, Zhongkui
    [J]. ADVANCED MANUFACTURING AND AUTOMATION VII, 2018, 451 : 357 - 365
  • [9] A deep ensemble dense convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Zhao, Ke
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [10] Rolling bearing fault diagnosis using optimal ensemble deep transfer network
    Li, Xingqiu
    Jiang, Hongkai
    Wang, Ruixin
    Niu, Maogui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 213