Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method

被引:0
|
作者
Li, Zhenning [1 ]
Jiang, Hongkai [1 ]
Liu, Shaowei [1 ]
Wang, Ruixin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing; Fault diagnosis; Intelligent Diagnosis; Deep reinforcement learning; Parameter transfer learning; ROTATING MACHINERY;
D O I
10.1109/ICPHM57936.2023.10194014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The reliable operation of rolling bearings is related to machinery safety. However, fault signals encountered in practical engineering applications are often characterized by high-dimensionality, complexity, and volume, which restricts the application of deep neural networks in fault diagnosis. Additionally, conventional diagnostic methods are limited by their reliance on manual feature extraction and a significant quantity of labeled samples, which can be time-consuming and resource-intensive. To address these limitations and improve the performance of fault diagnosis in the absence of labeled samples, an intelligent diagnostic agent (TERL-Agent) that combines transfer learning, ensemble learning and reinforcement learning is proposed. Firstly, an intelligent diagnostic agent is constructed by ensemble learning, which combines multiple reinforcement learning agents based on the Deep Q Network structure and has interactive learning capability to learn and classify fault data in the source domain environment. Secondly, transfer learning is used to transfer the feature extraction ability of the source domain intelligent diagnostic agent to the target intelligent diagnostic agent. Finally, the obtained target intelligent diagnostic agent is evaluated on fault data in the target domain and compared with other methods. The results indicate that the proposed method exhibits remarkable advantages and has great potential for practical application in fault diagnosis.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with Multi-source domains
    Li, Xingqiu
    Jiang, Hongkai
    Xie, Min
    Wang, Tongqing
    Wang, Ruixin
    Wu, Zhenghong
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [2] Rolling bearing fault diagnosis using optimal ensemble deep transfer network
    Li, Xingqiu
    Jiang, Hongkai
    Wang, Ruixin
    Niu, Maogui
    KNOWLEDGE-BASED SYSTEMS, 2021, 213
  • [3] A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Zhu, Ke
    Wang, Yanfeng
    Liu, Chaoqiang
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [4] A Deep Ensemble Learning Model for Rolling Bearing Fault Diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Li, Zhenning
    Liu, Yunpeng
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 133 - 136
  • [5] A Reinforcement Ensemble Learning Method for Rolling Bearing Fault Diagnosis under Variable Work Conditions
    Li, Yanning
    Zhang, Yi
    Wang, Ruixin
    Fu, Jiangfeng
    SENSORS, 2024, 24 (11)
  • [6] A reinforcement transfer learning method based on a policy gradient for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Wu, Zhenghong
    Xu, Jun
    Zhang, Jianjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [7] Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning
    Zhang X.
    Pan G.
    Guo H.
    Mao Q.
    Fan H.
    Wan X.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2022, 50 (04): : 256 - 263
  • [8] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Tian, Yuling
    Liu, Xiangyu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 750 - 762
  • [9] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Yuling Tian
    Xiangyu Liu
    TsinghuaScienceandTechnology, 2019, 24 (06) : 750 - 762
  • [10] A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    ISA TRANSACTIONS, 2022, 129 : 505 - 524