Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method

被引:0
|
作者
Li, Zhenning [1 ]
Jiang, Hongkai [1 ]
Liu, Shaowei [1 ]
Wang, Ruixin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing; Fault diagnosis; Intelligent Diagnosis; Deep reinforcement learning; Parameter transfer learning; ROTATING MACHINERY;
D O I
10.1109/ICPHM57936.2023.10194014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The reliable operation of rolling bearings is related to machinery safety. However, fault signals encountered in practical engineering applications are often characterized by high-dimensionality, complexity, and volume, which restricts the application of deep neural networks in fault diagnosis. Additionally, conventional diagnostic methods are limited by their reliance on manual feature extraction and a significant quantity of labeled samples, which can be time-consuming and resource-intensive. To address these limitations and improve the performance of fault diagnosis in the absence of labeled samples, an intelligent diagnostic agent (TERL-Agent) that combines transfer learning, ensemble learning and reinforcement learning is proposed. Firstly, an intelligent diagnostic agent is constructed by ensemble learning, which combines multiple reinforcement learning agents based on the Deep Q Network structure and has interactive learning capability to learn and classify fault data in the source domain environment. Secondly, transfer learning is used to transfer the feature extraction ability of the source domain intelligent diagnostic agent to the target intelligent diagnostic agent. Finally, the obtained target intelligent diagnostic agent is evaluated on fault data in the target domain and compared with other methods. The results indicate that the proposed method exhibits remarkable advantages and has great potential for practical application in fault diagnosis.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [21] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Shaojiang Dong
    Kun He
    Baoping Tang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [22] A Deep Domain-Adversarial Transfer Fault Diagnosis Method for Rolling Bearing Based on Ensemble Empirical Mode Decomposition
    Yu, Xiao
    Xia, Bing
    Yang, Shuxin
    Yin, Hongshen
    Wang, Yajie
    Liu, Xiaowen
    JOURNAL OF SENSORS, 2022, 2022
  • [23] A Deep Learning Method for Rolling Bearing Fault Diagnosis through Heterogeneous Data
    Zhou, Wei
    Hou, Yandong
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1214 - 1219
  • [24] Fault Diagnosis of Rolling Bearing Based on Modified Deep Metric Learning Method
    Xu, Zengbing
    Li, Xiaojuan
    Lin, Hui
    Wang, Zhigang
    Peng, Tao
    SHOCK AND VIBRATION, 2021, 2021 (2021)
  • [25] Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing
    Zhou, Jianmin
    Yang, Xiaotong
    Li, Jiahui
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [26] Deep transfer learning for rolling bearing fault diagnosis under variable operating conditions
    Che, Changchang
    Wang, Huawei
    Fu, Qiang
    Ni, Xiaomei
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (12)
  • [27] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [28] Fault diagnosis of rolling bearing based on improved stacking ensemble learning
    Wang, Xinghua
    Meng, Runxin
    Cao, Jiawen
    Wang, Guangtao
    Liu, Xiaolong
    Sun, Ruijin
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [29] A Deep Learning Approach for Rolling Bearing Intelligent Fault Diagnosis
    Tan, Fusheng
    Mo, Mingqiao
    Li, Haonan
    Han, Xuefeng
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 364 - 369
  • [30] Bearing fault diagnosis method based on Gramian angular field and ensemble deep learning
    Han, Yanfang
    Li, Baozhu
    Huang, Yingkun
    Li, Liang
    JOURNAL OF VIBROENGINEERING, 2023, 25 (01) : 42 - 52