Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion

被引:8
|
作者
Yu, Di [1 ]
Fu, Haiyue [1 ]
Song, Yanchen [1 ]
Xie, Wenjian [2 ]
Xie, Zhijie [1 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150042, Peoples R China
[2] Beijing Inst Space Launch Technol, Beijing 100076, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
fault diagnosis; rolling bearing; fine-tuning; transfer learning; convolutional neural network;
D O I
10.1088/1361-6501/acfe31
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Current deep-learning methods are often based on significantly large quantities of labeled fault data for supervised training. In practice, it is difficult to obtain samples of rolling bearing failures. In this paper, a transfer learning-based feature fusion convolutional neural network approach for bearing fault diagnosis is proposed. Specifically, the raw vibration signal features and the corresponding time-frequency image features of the input data are extracted by a one-dimensional convolutional neural network and a pre-trained ConvNeXt, respectively, and connected by a feature fusion strategy. Then, the fine-tuning method based on transfer learning can effectively reduce the reliance on labeled samples in the target domain. A wide convolution kernel is introduced in the time-domain signal feature extraction to increase the receptive field, which is combined with the channel attention mechanism to further optimize the feature quality. Finally, two common bearing datasets are utilized for fault diagnosis experiments. The experimental results show that the proposed model achieves an average accuracy of more than 98.63% in both cross-working conditions and cross-device diagnosis tasks. Meanwhile, anti-noise experiments and ablation experiments further validate the accuracy and robustness of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    [J]. SENSORS, 2019, 19 (09)
  • [2] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [3] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Mingxuan Liang
    Pei Cao
    J. Tang
    [J]. The International Journal of Advanced Manufacturing Technology, 2021, 112 : 819 - 831
  • [4] A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    [J]. ISA TRANSACTIONS, 2022, 129 : 505 - 524
  • [5] Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Feng, Ziwei
    Tong, Qingbin
    Jiang, Xuedong
    Lu, Feiyu
    Du, Xin
    Xu, Jianjun
    Huo, Jingyi
    [J]. SENSORS, 2024, 24 (07)
  • [6] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang, Nini
    Ma, Ping
    Zhang, Hongli
    Wang, Cong
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358
  • [7] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [8] A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network
    Han, Xiaoyu
    Cao, Yunpeng
    Luan, Junqi
    Ao, Ran
    Feng, Weixing
    Li, Shuying
    [J]. MACHINES, 2023, 11 (02)
  • [9] Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion
    Jin, Jiang-Tao
    Xu, Zi-Fei
    Li, Chun
    Miao, Wei-Pao
    Xiao, Jun-Qing
    Sun, Kang
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 109 - 116
  • [10] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    [J]. APPLIED ACOUSTICS, 2022, 192