THE JACOBS-KEANE THEOREM FROM THE S-ADIC VIEWPOINT

被引:0
|
作者
Arbulu, Felipe [1 ]
Durand, Fabien [1 ]
Espinoza, Bastian [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA, CNRS UMR 7352, F-80039 Amiens, France
[2] U Liege, Math Discretes, B-4000 Liege, Belgium
关键词
Toeplitz subshifts; S-adic subshifts; coincidences; odometer; discrete spectrum; SUBSTITUTIONS; RECOGNIZABILITY; RANK; COINCIDENCE; SPECTRUM; SYSTEMS;
D O I
10.3934/dcds.2024052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the light of recent developments of the S-adic study of subshifts, we revisit, within this framework, a well-known result on Toeplitz subshifts due to Jacobs-Keane giving a sufficient combinatorial condition to ensure discrete spectrum. We show that the notion of coincidences, originally introduced in the '70s for the study of the discrete spectrum of substitution subshifts, together with the S-adic structure of the subshift allow to go deeper in the study of Toeplitz subshifts. We characterize spectral properties of the factor maps onto the maximal equicontinuous topological factors by means of coincidences density. We also provide an easy to check necessary and sufficient condition to ensure unique ergodicity for constant length S-adic subshifts.
引用
收藏
页码:2849 / +
页数:415
相关论文
共 50 条
  • [1] Some improvements of the S-adic conjecture
    Leroy, Julien
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [2] On partial rigidity of S-adic subshifts
    Donoso, Sebastian
    Maass, Alejandro
    Radic, Tristan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
  • [3] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [4] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [5] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409
  • [6] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [7] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [8] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292
  • [9] Geometric representation of the infimax S-adic family
    Boyland, Philip
    Severa, William
    FUNDAMENTA MATHEMATICAE, 2018, 240 (01) : 15 - 50
  • [10] Measure transfer and S-adic developments for subshifts
    Bedaride, Nicolas
    Hilion, Arnaud
    Lustig, Martin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (11) : 3120 - 3154