Arithmetic progressions in polynomial orbits

被引:0
|
作者
Sadek, Mohammad [1 ]
Wafik, Mohamed [2 ]
Yesin, Tugba [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Tuzla, Istanbul, Turkiye
[2] Univ South Carolina, Dept Math, LeConte Coll, 1523 Greene St, Columbia, SC 29208 USA
关键词
Arithmetic dynamics; covering systems; polynomial orbits; intersection of orbits; primitive divisors; PRIMITIVE PRIME DIVISORS;
D O I
10.1142/S1793042124500970
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit Orb(f)(t) = {t,f(t),f(f(t)),& mldr;}, where t is an integer, using arithmetic progressions each of which contains t. Fixing an integer k >= 2, we prove that it is impossible to cover Orb(f)(t) using k such arithmetic progressions unless Orb(f)(t) is contained in one of these progressions. In fact, we show that the relative density of terms covered by k such arithmetic progressions in Orb(f)(t) is uniformly bounded from above by a bound that depends solely on k. In addition, the latter relative density can be made as close as desired to 1 by an appropriate choice of k arithmetic progressions containing t if k is allowed to be large enough.
引用
下载
收藏
页码:2009 / 2025
页数:17
相关论文
共 50 条
  • [41] On Arithmetic Progressions in Model Sets
    Anna Klick
    Nicolae Strungaru
    Adi Tcaciuc
    Discrete & Computational Geometry, 2022, 67 : 930 - 946
  • [42] GAUSSIAN SEQUENCES IN ARITHMETIC PROGRESSIONS
    Friedlander, John B.
    Iwaniec, Henryk
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2007, 37 (01) : 149 - 157
  • [43] Primes in short arithmetic progressions
    Puchta, JC
    ACTA ARITHMETICA, 2003, 106 (02) : 143 - 149
  • [44] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China Mathematics, 2023, 66 : 2669 - 2682
  • [45] THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS
    FRIEDLANDER, JB
    IWANIEC, H
    ACTA ARITHMETICA, 1985, 45 (03) : 273 - 277
  • [46] Arithmetic progressions on Huff curves
    Moody, Dustin
    ANNALES MATHEMATICAE ET INFORMATICAE, 2011, 38 : 111 - 116
  • [47] Discrepancy in modular arithmetic progressions
    Fox, Jacob
    Xu, Max Wenqiang
    Zhou, Yunkun
    COMPOSITIO MATHEMATICA, 2022, 158 (11) : 2082 - 2108
  • [48] Full powers in arithmetic progressions
    Pink, I
    Tengely, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 535 - 545
  • [49] Binomial coefficients in arithmetic progressions
    Rakaczki, CS
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 547 - 558
  • [50] On arithmetic progressions on Pellian equations
    Dujella, A.
    Petho, A.
    Tadic, P.
    ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) : 29 - 38