Full powers in arithmetic progressions

被引:0
|
作者
Pink, I [1 ]
Tengely, S [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2000年 / 57卷 / 3-4期
关键词
exponential diophantine equation; full powers; arithmetic progression;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For given positive integers a and n, we consider the three-term arithmetic progressions a(2), y(n), x(2), where x and y are unknown integers. We give explicit upper bounds both for the number of such arithmetic progressions and for max{\x\, \y\}. Moreover, we find all such progressions with 1 less than or equal to a less than or equal to 1000, and 3 < n < 80.
引用
收藏
页码:535 / 545
页数:11
相关论文
共 50 条
  • [1] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [2] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03): : 965 - 986
  • [3] Arithmetic progressions consisting of unlike powers
    Bruin, N.
    Gyory, K.
    Hajdu, L.
    Tengely, Sz.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (04): : 539 - 555
  • [4] On Arithmetic Progressions of Powers in Cyclotomic Polynomials
    Hung Viet Chu
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (03): : 268 - 272
  • [5] On algorithms for computing the sums of powers of arithmetic progressions
    Shiue, Peter J.
    Huang, Shen C.
    Jameson, Eric
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) : 113 - 121
  • [6] Uniform bounds for the number of powers in arithmetic progressions
    Hajdu, L.
    Papp, A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [7] Sums of two unlike powers in arithmetic progressions
    Jörg Brüdern
    Robert C. Vaughan
    European Journal of Mathematics, 2022, 8 : 182 - 213
  • [8] Uniform bounds for the number of powers in arithmetic progressions
    L. Hajdu
    Á. Papp
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [9] Sums of two unlike powers in arithmetic progressions
    Bruedern, Jorg
    Vaughan, Robert C.
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (SUPPL 1) : 182 - 213
  • [10] THE DIVISOR FUNCTION IN ARITHMETIC PROGRESSIONS MODULO PRIME POWERS
    Khan, Rizwanur
    MATHEMATIKA, 2016, 62 (03) : 898 - 908