Full powers in arithmetic progressions

被引:0
|
作者
Pink, I [1 ]
Tengely, S [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2000年 / 57卷 / 3-4期
关键词
exponential diophantine equation; full powers; arithmetic progression;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For given positive integers a and n, we consider the three-term arithmetic progressions a(2), y(n), x(2), where x and y are unknown integers. We give explicit upper bounds both for the number of such arithmetic progressions and for max{\x\, \y\}. Moreover, we find all such progressions with 1 less than or equal to a less than or equal to 1000, and 3 < n < 80.
引用
收藏
页码:535 / 545
页数:11
相关论文
共 50 条
  • [31] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [32] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [33] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [34] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [35] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [36] On rainbow arithmetic progressions
    Axenovich, M
    Fon-Der-Flaass, D
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [37] Arithmetic progressions and the primes
    Tao, Terence
    COLLECTANEA MATHEMATICA, 2006, : 37 - 88
  • [38] ARITHMETIC PROGRESSIONS IN SEQUENCES
    CHOI, SLG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (AUG): : 427 - 430
  • [39] PRIMES IN ARITHMETIC PROGRESSIONS
    MOTOHASHI, Y
    INVENTIONES MATHEMATICAE, 1978, 44 (02) : 163 - 178
  • [40] On disjoint arithmetic progressions
    Chen, YG
    ACTA ARITHMETICA, 2005, 118 (02) : 143 - 148