Arithmetic progressions in polynomial orbits

被引:0
|
作者
Sadek, Mohammad [1 ]
Wafik, Mohamed [2 ]
Yesin, Tugba [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Tuzla, Istanbul, Turkiye
[2] Univ South Carolina, Dept Math, LeConte Coll, 1523 Greene St, Columbia, SC 29208 USA
关键词
Arithmetic dynamics; covering systems; polynomial orbits; intersection of orbits; primitive divisors; PRIMITIVE PRIME DIVISORS;
D O I
10.1142/S1793042124500970
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit Orb(f)(t) = {t,f(t),f(f(t)),& mldr;}, where t is an integer, using arithmetic progressions each of which contains t. Fixing an integer k >= 2, we prove that it is impossible to cover Orb(f)(t) using k such arithmetic progressions unless Orb(f)(t) is contained in one of these progressions. In fact, we show that the relative density of terms covered by k such arithmetic progressions in Orb(f)(t) is uniformly bounded from above by a bound that depends solely on k. In addition, the latter relative density can be made as close as desired to 1 by an appropriate choice of k arithmetic progressions containing t if k is allowed to be large enough.
引用
下载
收藏
页码:2009 / 2025
页数:17
相关论文
共 50 条
  • [31] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03): : 965 - 986
  • [32] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [33] PRIMES IN ARITHMETIC PROGRESSIONS
    FOUVRY, E
    IWANIEC, H
    ACTA ARITHMETICA, 1983, 42 (02) : 197 - 218
  • [34] Palindromes in arithmetic progressions
    Col, Sylvain
    ACTA ARITHMETICA, 2009, 137 (01) : 1 - 41
  • [35] DENSITIES IN ARITHMETIC PROGRESSIONS
    GOLDFELD, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) : 1389 - +
  • [36] On values of a polynomial at arithmetic progressions with equal products (vol 72, pg 67, 1995)
    Saradha, N
    Shorey, TN
    Tijdeman, R
    ACTA ARITHMETICA, 1998, 84 (04) : 385 - 386
  • [37] Products of primes in arithmetic progressions
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 193 - 240
  • [38] On arithmetic progressions in finite fields
    Lemos, Abilio
    Neumann, Victor G. L.
    Ribas, Savio
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (06) : 2323 - 2346
  • [39] Palindromic numbers in arithmetic progressions
    Harminc, M
    Sotak, R
    FIBONACCI QUARTERLY, 1998, 36 (03): : 259 - 262
  • [40] Product of primes in arithmetic progressions
    Ramare, Olivier
    Srivastav, Priyamvad
    Serra, Oriol
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 747 - 766