A COMBINED KAUP-NEWELL TYPE INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR POTENTIALS AND A HEREDITARY RECURSION OPERATOR

被引:3
|
作者
Ma, Wen-xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
关键词
Matrix eigenvalue problem; zero curvature equation; integrable hier; archy; derivate nonlinear Schr & ouml; dinger equations; SOLITON HIERARCHY; EQUATIONS; EVOLUTION;
D O I
10.3934/dcdss.2024117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We aim to study a Kaup-Newell type matrix eigenvalue problem with four potentials, generated from a specific matrix Lie algebra, and compute an associated soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. The Liouville integrability of the resulting soliton hierarchy is a consequence of the bi-Hamiltonian structure. An illustrative example is explicitly worked out, providing a novel integrable model consisting of combined derivative nonlinear Schr & ouml;dinger equations involving two arbitrary constants.
引用
收藏
页数:11
相关论文
共 27 条
  • [21] Spectral and soliton structures for the four-component Kaup-Newell type negative flow equation
    Yan, Feiying
    Geng, Xianguo
    Li, Ruomeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [22] A multi-component matrix loop algebra and the multi-component Kaup-Newell (KN) hierarchy, as well as its integrable coupling system
    Yuan, Wei
    Zhang, Yufeng
    Chao, Yue
    CHAOS SOLITONS & FRACTALS, 2007, 31 (02) : 473 - 479
  • [23] A LIOUVILLE INTEGRABLE HIERARCHY WITH FOUR POTENTIALS AND ITS BI-HAMILTONIAN STRUCTURE
    Ma, Wen-Xiu
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (03)
  • [24] The fractional quadratic-form identity and Hamiltonian structure of an integrable coupling of the fractional Ablowitz-Kaup-Newell-Segur hierarchy
    Yue, Chao
    Xia, Tiecheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [25] Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures
    Hu, Beibei
    Ma, Wen-Xiu
    Xia, Tiecheng
    Zhang, Ling
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1565 - 1577
  • [26] A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [27] AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2023, 145