A COMBINED KAUP-NEWELL TYPE INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR POTENTIALS AND A HEREDITARY RECURSION OPERATOR

被引:3
|
作者
Ma, Wen-xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
关键词
Matrix eigenvalue problem; zero curvature equation; integrable hier; archy; derivate nonlinear Schr & ouml; dinger equations; SOLITON HIERARCHY; EQUATIONS; EVOLUTION;
D O I
10.3934/dcdss.2024117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We aim to study a Kaup-Newell type matrix eigenvalue problem with four potentials, generated from a specific matrix Lie algebra, and compute an associated soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. The Liouville integrability of the resulting soliton hierarchy is a consequence of the bi-Hamiltonian structure. An illustrative example is explicitly worked out, providing a novel integrable model consisting of combined derivative nonlinear Schr & ouml;dinger equations involving two arbitrary constants.
引用
收藏
页数:11
相关论文
共 27 条