A LIOUVILLE INTEGRABLE HIERARCHY WITH FOUR POTENTIALS AND ITS BI-HAMILTONIAN STRUCTURE

被引:34
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Matrix spectral problem; Zero curvature equation; Integrable hierar-chy; NLS equations; mKdV equations; SOLITON HIERARCHY; EQUATIONS; TRANSFORMATIONS;
D O I
10.59277/RomRepPhys.2023.75.115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to construct a Liouville integrable Hamiltonian hierarchy from a specific matrix spectral problem with four potentials through the zero curvature formulation. The Liouville integrability of the resulting hierarchy is exhibited by a bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of novel four-component coupled Liouville integrable nonlinear Schro center dot dinger equations and modified Korteweg-de Vries equations are presented.
引用
收藏
页数:10
相关论文
共 50 条