A LIOUVILLE INTEGRABLE HIERARCHY WITH FOUR POTENTIALS AND ITS BI-HAMILTONIAN STRUCTURE

被引:34
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Matrix spectral problem; Zero curvature equation; Integrable hierar-chy; NLS equations; mKdV equations; SOLITON HIERARCHY; EQUATIONS; TRANSFORMATIONS;
D O I
10.59277/RomRepPhys.2023.75.115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to construct a Liouville integrable Hamiltonian hierarchy from a specific matrix spectral problem with four potentials through the zero curvature formulation. The Liouville integrability of the resulting hierarchy is exhibited by a bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of novel four-component coupled Liouville integrable nonlinear Schro center dot dinger equations and modified Korteweg-de Vries equations are presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Bi-Hamiltonian partially integrable systems
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 1984 - 1997
  • [42] On bi-hamiltonian structure of some integrable systems on so*(4)
    Tsiganov, A. V.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (02) : 171 - 185
  • [43] RECURSION OPERATOR AND BI-HAMILTONIAN STRUCTURE FOR INTEGRABLE MULTIDIMENSIONAL LATTICES
    RAGNISCO, O
    SANTINI, PM
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (07) : 1593 - 1603
  • [44] The Liouville integrable coupling system of the m-AKNS hierarchy and its Hamiltonian structure
    School of Information Engineering, Taishan Medical University, Taian 271016, China
    不详
    不详
    Chin. Phys., 2007, 3 (595-598):
  • [45] The Liouville integrable coupling system of the m-AKNS hierarchy and its Hamiltonian structure
    Yue Chao
    Yang Geng-Wen
    Xu Yue-Cai
    CHINESE PHYSICS, 2007, 16 (03): : 595 - 598
  • [46] Boussinesq hierarchy and bi-Hamiltonian geometry
    Ortenzi, Giovanni
    Pedroni, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [47] BI-HAMILTONIAN STRUCTURE OF AN INTEGRABLE HENON-HEILES SYSTEM
    CABOZ, R
    RAVOSON, V
    GAVRILOV, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10): : L523 - L525
  • [48] On bi-hamiltonian structure of some integrable systems on so*(4)
    A V Tsiganov
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 171 - 185
  • [49] A vector CTL-RTL hierarchy with bi-Hamiltonian structure
    Zhu, Jinyan
    Zhou, Ruguang
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 154 - 159
  • [50] NEW RESTRICTED FLOWS OF THE KDV HIERARCHY AND THEIR BI-HAMILTONIAN STRUCTURE
    RAUCHWOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1991, 160 (03) : 241 - 246