Measurement-device-independent verification of quantum states

被引:0
|
作者
Xu, Xin-Yu [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Zhou, Qing [1 ,2 ,3 ]
Hu, Shu-Ming [1 ,2 ,3 ]
Wei, Jun-Hao [1 ,2 ,3 ]
Yang, Nuo-Ya [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Chen, Kai [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY;
D O I
10.1103/PhysRevA.109.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient and reliable verification of quantum states is central to quantum information processing applications. If using well-characterized measurement devices, effective methods have been developed for quantum state verification (QSV). In reality, however, measurement devices are generally imperfect or untrusted, which limits significantly the application of standard QSV protocols. Here, we propose the measurement-device-independent QSV (MDI-QSV) scheme for practice. With the help of trusted quantum inputs, we have developed a systematical approach to design MDI-QSV strategies for an arbitrary pure target state. We find that the number of required measurements has an optimal scaling with required accuracy and confidence level, similar to the standard QSV where trusted measurement devices are available. Our results offer a sample-efficient and realistic method for quantum state verification with virtues of a measurement-device-independent manner, and are within reach of current technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Measurement-Device-Independent Verification of a Quantum Memory
    Yu, Yong
    Sun, Peng-Fei
    Zhang, Yu-Zhe
    Bai, Bing
    Fang, Yu-Qiang
    Luo, Xi-Yu
    An, Zi-Ye
    Li, Jun
    Zhang, Jun
    Xu, Feihu
    Bao, Xiao-Hui
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2021, 127 (16)
  • [2] Measurement-Device-Independent Verification of Quantum Channels
    Graffitti, Francesco
    Pickston, Alexander
    Barrow, Peter
    Proietti, Massimiliano
    Kundys, Dmytro
    Rosset, Denis
    Ringbauer, Martin
    Fedrizzi, Alessandro
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [3] Experimental measurement-device-independent verification of quantum steering
    Sacha Kocsis
    Michael J. W. Hall
    Adam J. Bennet
    Dylan J. Saunders
    Geoff J. Pryde
    Nature Communications, 6
  • [4] Experimental measurement-device-independent verification of quantum steering
    Kocsis, Sacha
    Hall, Michael J. W.
    Bennet, Adam J.
    Saunders, Dylan J.
    Pryde, Geoff J.
    NATURE COMMUNICATIONS, 2015, 6
  • [5] Measurement-device-independent randomness generation with arbitrary quantum states
    Bischof, Felix
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [6] Measurement-device-independent verification of channel steering
    Jeon, InU
    Jeong, Hyunseok
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [7] Measurement-device-independent quantum dialogue
    石国芳
    Chinese Physics B, 2021, 30 (10) : 26 - 31
  • [8] Measurement-Device-Independent Quantum Cryptography
    Xu, Feihu
    Curty, Marcos
    Qi, Bing
    Lo, Hoi-Kwong
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03)
  • [9] Measurement-device-independent quantum dialogue
    Shi, Guo-Fang
    CHINESE PHYSICS B, 2021, 30 (10)
  • [10] Measurement-device-independent and arbitrarily loss-tolerant verification of quantum steering
    Jeon, Inu
    Jeong, Hyunseok
    PHYSICAL REVIEW A, 2019, 99 (01)