Efficient electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with Fe-Ni3S2@NiFe-PBA nanocubes

被引:5
|
作者
Li, Ning [1 ]
Wang, Hong-Hui [3 ]
Chen, Hao [1 ]
Liu, Zhen-Zhen [1 ]
Wu, Gao-Kai [1 ]
Yang, Qing [1 ]
Qin, Su -Fang [1 ]
You, Le-Xing [1 ]
Jiang, Yan-Xia [2 ]
机构
[1] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Fujian Prov Univ, Tan Kah Kee Coll, Key Lab Estuarine Ecol Secur & Environm Hlth, Zhangzhou 363105, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalysis; 5-hydroxymethylfurfural; Prussian blue analogue; 2,5-furandicarboxylic acid; PRUSSIAN BLUE; EVOLUTION; BIOMASS;
D O I
10.1016/j.electacta.2024.144495
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrooxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) represents a promising avenue for generating value-added products derived from biomass. Nevertheless, the development of highly efficient electrocatalysts for HMF electrooxidation (HMFOR) remains an ongoing challenge. In this study, we present a novel approach wherein Fe-doped Ni3S2@NiFe-PBA nanocubes are synthesized directly on threedimensional nickel foam (NF) substrates using a straightforward hydrothermal reaction and subsequent impregnation. This composite Fe-Ni3S2@NiFe-PBA/NF catalyst showcases exceptional performance in HMFOR (a faraday efficiency of 97.4 %), characterized by both its remarkable conversion (100 %) and impressive FDCA yield (97.1 %), coupled with its robust stability over ten cycles. The heightened HMFOR activity exhibited by the Fe-Ni3S2@NiFe-PBA/NF catalyst can be contributed to the introduction of Fe into the Ni3S2 matrix. This deliberate doping strategy engenders accelerated charge transfer kinetics, an increased abundance of accessible surface-active sites, and improved conductivity, thereby enhancing the overall HMFOR performance. By establishing these outcomes, this investigation lays a foundation for the prospective design of electrocatalysts with applications in biomass utilization and energy conversion.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617
  • [22] Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide
    Prasad, Shivshankar
    Kumar, Ajay
    Dutta, Suman
    Ahmad, Ejaz
    CHEMCATCHEM, 2024, 16 (20)
  • [23] Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2, 5-Furandicarboxylic Acid
    Giannakoudalds, Dimitrios A.
    Colmenares, Juan Carlos
    Tsiplakides, Dimitrios
    Triantafyllidis, Konstantinos S.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (05): : 1970 - 1993
  • [24] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [25] Metal sulfide enhanced metal-organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Feng, Yixuan
    Yang, Kun
    Smith Jr, Richard L. L.
    Qi, Xinhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (12) : 6375 - 6383
  • [26] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [27] Cu-Ni Bimetallic Hydroxide Catalyst for Efficient Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Hao
    Wang, Jiatuan
    Yao, Yuan
    Zhang, Zihao
    Yang, Zhenzhen
    Li, Jing
    Chen, Kequan
    Lu, Xiuyang
    Ouyang, Pingkai
    Fu, Jie
    CHEMELECTROCHEM, 2019, 6 (23) : 5797 - 5801
  • [28] Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation
    Xia, Bowen
    Zhu, Bin
    Liu, Jin
    Chen, Chunlin
    Zhang, Jian
    PROGRESS IN CHEMISTRY, 2022, 34 (08) : 1661 - 1677
  • [29] Improved Performance of Nickel Boride by Phosphorus Doping as an Efficient Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Guo, Yong
    Wang, Yanqin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) : 17348 - 17356
  • [30] Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO2
    Hayashi, Eri
    Komanoya, Tasuku
    Kamata, Keigo
    Hara, Michikazu
    CHEMSUSCHEM, 2017, 10 (04) : 654 - 658