Largest hyperbolic action of 3-manifold groups

被引:0
|
作者
Abbott, Carolyn [1 ]
Hoang Thanh Nguyen [2 ]
Rasmussen, Alexander J. [3 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA USA
[2] FPT Univ, Dept Math, DaNang, Vietnam
[3] Stanford Univ, Dept Math, Stanford, CA USA
关键词
QUASICONVEXITY;
D O I
10.1112/blms.13118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of equivalence classes of cobounded actions of a group G on different hyperbolic metric spaces carries a natural partial order. Following Abbott-Balasubramanya-Osin, the group G is H-accessible if the resulting poset has a largest element. In this paper, we prove that every nongeometric 3-manifold has a finite cover with H-inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is H-inaccessible. We also prove that every Croke-Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three-dimensional graph manifolds) has a finite index subgroup that is H-inaccessible.
引用
收藏
页码:3090 / 3113
页数:24
相关论文
共 50 条
  • [21] THE GENUS SPECTRUM OF A HYPERBOLIC 3-MANIFOLD
    McReynolds, D. B.
    Reid, A. W.
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (01) : 169 - 185
  • [22] The visual core of a hyperbolic 3-manifold
    James W. Anderson
    Richard D. Canary
    Mathematische Annalen, 2001, 321 : 989 - 1000
  • [23] IMBEDDINGS OF 3-MANIFOLD GROUPS
    GONZALEZACUNA, F
    WHITTEN, WC
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 99 (474) : 1 - 55
  • [24] Minimizing immersions of a hyperbolic surface in a hyperbolic 3-manifold
    Bonsante, Francesco
    Mondello, Gabriele
    Schlenker, Jean-Marc
    AMERICAN JOURNAL OF MATHEMATICS, 2023, 145 (04) : 995 - 1049
  • [25] Quasiconvexity in 3-manifold groups
    Hoang Thanh Nguyen
    Hung Cong Tran
    Yang, Wenyuan
    MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 405 - 437
  • [26] Quasiconvexity in 3-manifold groups
    Hoang Thanh Nguyen
    Hung Cong Tran
    Wenyuan Yang
    Mathematische Annalen, 2021, 381 : 405 - 437
  • [27] EPIMORPHISMS OF 3-MANIFOLD GROUPS
    Boileau, Michel
    Friedl, Stefan
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (03): : 931 - 942
  • [28] Isospectrality and 3-manifold groups
    Ruberman, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) : 2467 - 2471
  • [29] CONSTRUCTING NON-CONGRUENCE SUBGROUPS OF FLEXIBLE HYPERBOLIC 3-MANIFOLD GROUPS
    Cooper, D.
    Long, D. D.
    Thistlethwaite, M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3943 - 3949
  • [30] Quantum Modularity for a Closed Hyperbolic 3-Manifold
    Wheeler, Campbell
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2025, 21