The visual core of a hyperbolic 3-manifold

被引:0
|
作者
James W. Anderson
Richard D. Canary
机构
[1] Faculty of Mathematical Studies,
[2] University of Southampton,undefined
[3] Southampton,undefined
[4] SO17 1BJ,undefined
[5] UK,undefined
[6] Department of Mathematics,undefined
[7] University of Michigan,undefined
[8] Ann Arbor,undefined
[9] MI 48109,undefined
[10] USA,undefined
来源
Mathematische Annalen | 2001年 / 321卷
关键词
Manifold; Basic Property; Kleinian Group; Geometric Limit; Algebraic Limit;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we introduce the notion of the visual core of a hyperbolic 3-manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $N={\bf H}^3/\Gamma$\end{document}, and explore some of its basic properties. We investigate circumstances under which the visual core \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal V}(N')$\end{document} of a cover \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $N'={\bf H}^3/\Gamma'$\end{document} of N embeds in N, via the usual covering map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pi: N'\rightarrow N$\end{document}. We go on to show that if the algebraic limit of a sequence of isomorphic Kleinian groups is a generalized web group, then the visual core of the algebraic limit manifold embeds in the geometric limit manifold. Finally, we discuss the relationship between the visual core and Klein-Maskit combination along component subgroups.
引用
收藏
页码:989 / 1000
页数:11
相关论文
共 50 条