Largest hyperbolic action of 3-manifold groups

被引:0
|
作者
Abbott, Carolyn [1 ]
Hoang Thanh Nguyen [2 ]
Rasmussen, Alexander J. [3 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA USA
[2] FPT Univ, Dept Math, DaNang, Vietnam
[3] Stanford Univ, Dept Math, Stanford, CA USA
关键词
QUASICONVEXITY;
D O I
10.1112/blms.13118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of equivalence classes of cobounded actions of a group G on different hyperbolic metric spaces carries a natural partial order. Following Abbott-Balasubramanya-Osin, the group G is H-accessible if the resulting poset has a largest element. In this paper, we prove that every nongeometric 3-manifold has a finite cover with H-inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is H-inaccessible. We also prove that every Croke-Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three-dimensional graph manifolds) has a finite index subgroup that is H-inaccessible.
引用
收藏
页码:3090 / 3113
页数:24
相关论文
共 50 条
  • [41] Grothendieck rigidity of 3-manifold groups
    Boileau, Michel
    Friedl, Stefan
    GROUPS GEOMETRY AND DYNAMICS, 2019, 13 (04) : 1133 - 1150
  • [42] MORSE BOUNDARIES OF 3-MANIFOLD GROUPS
    Zbinden, Stefanie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (10) : 7175 - 7228
  • [43] 3-manifold groups and nonpositive curvature
    Kapovich, M
    Leeb, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (05) : 841 - 852
  • [44] FRATTINI SUBGROUPS OF 3-MANIFOLD GROUPS
    ALLENBY, RBJT
    BOLER, J
    EVANS, B
    MOSER, LE
    TANG, CY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) : 275 - 300
  • [45] SUBGROUP SEPARABILITY AND 3-MANIFOLD GROUPS
    LONG, DD
    NIBLO, GA
    MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) : 209 - 215
  • [46] On representation varieties of 3-manifold groups
    Kapovich, Michael
    Millson, John J.
    GEOMETRY & TOPOLOGY, 2017, 21 (04) : 1931 - 1968
  • [47] SUBGROUP DISTORTION OF 3-MANIFOLD GROUPS
    Hoang Thanh Nguyen
    Sun, Hongbin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) : 6683 - 6711
  • [48] SUBNORMAL SUBGROUPS IN 3-MANIFOLD GROUPS
    ELKALLA, HS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (OCT): : 342 - 360
  • [49] 3-manifold Groups and Nonpositive Curvature
    M. Kapovich
    B. Leeb
    Geometric & Functional Analysis GAFA, 1998, 8 : 841 - 852
  • [50] Free subgroups of 3-manifold groups
    Belolipetsky, Mikhail
    Doria, Cayo
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (01) : 243 - 254