Distilroberta2gnn: a new hybrid deep learning approach for aspect-based sentiment analysis

被引:2
|
作者
Alhadlaq, Aseel [1 ]
Altheneyan, Alaa [1 ]
机构
[1] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, Riyadh, Saudi Arabia
关键词
Sentiment analysis; Aspect-based sentiment analysis; Graph neural network; BERT; DistilRoBERTa2GNN;
D O I
10.7717/peerj-cs.2267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fi eld of natural language processing (NLP), aspect-based sentiment analysis (ABSA) is crucial for extracting insights from complex human sentiments towards specific fi c text aspects. Despite significant fi cant progress, the fi eld still faces challenges such as accurately interpreting subtle language nuances and the scarcity of high-quality, domain-specific fi c annotated datasets. This study introduces the DistilRoBERTa2GNN model, an innovative hybrid approach that combines the DistilRoBERTa pre-trained model's ' s feature extraction capabilities with the dynamic sentiment classification fi cation abilities of graph neural networks (GNN). Our comprehensive, four-phase data preprocessing strategy is designed to enrich model training with domain-specific, fi c, high-quality data. In this study, we analyze four publicly available benchmark datasets: Rest14, Rest15, Rest16-EN, and Rest16-ESP, to rigorously evaluate the effectiveness of our novel DistilRoBERTa2GNN model in ABSA. For the Rest14 dataset, our model achieved an F1 score of 77.98%, precision of 78.12%, and recall of 79.41%. The Rest15 dataset shows that our model achieves an F1 score of 76.86%, precision of 80.70%, and recall of 79.37%. For the Rest16-EN dataset, our model reached an F1 score of 84.96%, precision of 82.77%, and recall of 87.28%. For Rest16-ESP (Spanish dataset), our model achieved an F1 score of 74.87%, with a precision of 73.11% and a recall of 76.80%. These metrics highlight our model's ' s competitive edge over different baseline models used in ABSA studies. This study addresses critical ABSA challenges and sets a new benchmark for sentiment analysis research, guiding future efforts toward enhancing model adaptability and performance across diverse datasets.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Is position important? deep multi-task learning for aspect-based sentiment analysis
    Jie Zhou
    Jimmy Xiangji Huang
    Qinmin Vivian Hu
    Liang He
    Applied Intelligence, 2020, 50 : 3367 - 3378
  • [42] Efficient Hybrid Generation Framework for Aspect-Based Sentiment Analysis
    Lv, Haoran
    Liu, Junyi
    Wang, Henan
    Wang, Yaoming
    Luo, Jixiang
    Liu, Yaxiao
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1007 - 1018
  • [43] Sigmalaw PBSA - A Deep Learning Model for Aspect-Based Sentiment Analysis for the Legal Domain
    Rajapaksha, Isanka
    Mudalige, Chanika Ruchini
    Karunarathna, Dilini
    de Silva, Nisansa
    Perera, Amal Shehan
    Ratnayaka, Gathika
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT I, 2021, 12923 : 125 - 137
  • [44] Deep Context- and Relation-Aware Learning for Aspect-based Sentiment Analysis
    Oh, Shinhyeok
    Lee, Dongyub
    Whang, Taesun
    Park, Ilnam
    Seo, Gaeun
    Kim, Eunggyun
    Kim, Harksoo
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 495 - 503
  • [45] A hybrid approach for aspect-based sentiment analysis using a double rotatory attention model
    Zhou G.
    Cheng J.
    Frasincar F.
    International Journal of Web Engineering and Technology, 2022, 17 (01) : 3 - 28
  • [46] Aspect-based sentiment analysis using adaptive aspect-based lexicons
    Mowlaei, Mohammad Erfan
    Abadeh, Mohammad Saniee
    Keshavarz, Hamidreza
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 148
  • [47] Aspect-based Sentiment Analysis of Arabic Restaurants Customers' Reviews Using a Hybrid Approach
    Al-Smadi, Faris
    Al-Shboul, Bashar
    Al-Darras, Duha
    Al-Qudah, Dana
    PROCEEDINGS OF 2022 14TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS, MEDES 2022, 2022, : 123 - 128
  • [48] A novel hybrid deep learning model for aspect based sentiment analysis
    Kuppusamy, Mouthami
    Selvaraj, Anandamurugan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04):
  • [49] Semi-Supervised Learning for Aspect-Based Sentiment Analysis
    Zheng, Hang
    Zhang, Jianhui
    Suzuki, Yoshimi
    Fukumoto, Fumiyo
    Nishizaki, Hiromitsu
    2021 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW 2021), 2021, : 209 - 212
  • [50] Few-Shot Learning for Aspect-Based Sentiment Analysis
    Ruan, Heng
    Li, Xiaoge
    Li, Xianliang
    Jiang, Huikai
    Li, Yingchao
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1146 - 1157