In the fi eld of natural language processing (NLP), aspect-based sentiment analysis (ABSA) is crucial for extracting insights from complex human sentiments towards specific fi c text aspects. Despite significant fi cant progress, the fi eld still faces challenges such as accurately interpreting subtle language nuances and the scarcity of high-quality, domain-specific fi c annotated datasets. This study introduces the DistilRoBERTa2GNN model, an innovative hybrid approach that combines the DistilRoBERTa pre-trained model's ' s feature extraction capabilities with the dynamic sentiment classification fi cation abilities of graph neural networks (GNN). Our comprehensive, four-phase data preprocessing strategy is designed to enrich model training with domain-specific, fi c, high-quality data. In this study, we analyze four publicly available benchmark datasets: Rest14, Rest15, Rest16-EN, and Rest16-ESP, to rigorously evaluate the effectiveness of our novel DistilRoBERTa2GNN model in ABSA. For the Rest14 dataset, our model achieved an F1 score of 77.98%, precision of 78.12%, and recall of 79.41%. The Rest15 dataset shows that our model achieves an F1 score of 76.86%, precision of 80.70%, and recall of 79.37%. For the Rest16-EN dataset, our model reached an F1 score of 84.96%, precision of 82.77%, and recall of 87.28%. For Rest16-ESP (Spanish dataset), our model achieved an F1 score of 74.87%, with a precision of 73.11% and a recall of 76.80%. These metrics highlight our model's ' s competitive edge over different baseline models used in ABSA studies. This study addresses critical ABSA challenges and sets a new benchmark for sentiment analysis research, guiding future efforts toward enhancing model adaptability and performance across diverse datasets.