Sigmalaw PBSA - A Deep Learning Model for Aspect-Based Sentiment Analysis for the Legal Domain

被引:1
|
作者
Rajapaksha, Isanka [1 ]
Mudalige, Chanika Ruchini [1 ]
Karunarathna, Dilini [1 ]
de Silva, Nisansa [1 ]
Perera, Amal Shehan [1 ]
Ratnayaka, Gathika [1 ]
机构
[1] Univ Moratuwa, Dept Comp Sci & Engn, Moratuwa, Sri Lanka
关键词
Legal information extraction; Legal domain; Aspect-based sentiment analysis; Deep learning; NLP;
D O I
10.1007/978-3-030-86472-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Legal information retrieval holds a significant importance to lawyers and legal professionals. Its significance has grown as a result of the vast and rapidly increasing amount of legal documents available via electronic means. Legal documents, which can be considered flat file databases, contain information that can be used in a variety of ways, including arguments, counter-arguments, justifications, and evidence. As a result, developing automated mechanisms for extracting important information from legal opinion texts can be regarded as an important step toward introducing artificial intelligence into the legal domain. Identifying advantageous or disadvantageous statements within these texts in relation to legal parties can be considered as a critical and time consuming task. This task is further complicated by the relevance of context in automatic legal information extraction. In this paper, we introduce a solution to predict sentiment value of sentences in legal documents in relation to its legal parties. The Proposed approach employs a fine-grained sentiment analysis (Aspect-Based Sentiment Analysis) technique to achieve this task. Sigmalaw PBSA is a novel deep learning-based model for ABSA which is specifically designed for legal opinion texts. We evaluate the Sigmalaw PBSA model and existing ABSA models on the SigmaLaw-ABSA dataset which consists of 2000 legal opinion texts fetched from a public online data base. Experiments show that our model outperforms the state-of-the-art models. We also conduct an ablation study to identify which methods are most effective for legal texts.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [1] Deep learning for aspect-based sentiment analysis: a review
    Zhu L.
    Xu M.
    Bao Y.
    Xu Y.
    Kong X.
    PeerJ Computer Science, 2022, 8
  • [2] Ensemble Deep Learning for Aspect-based Sentiment Analysis
    Mohammadi, Azadeh
    Shaverizade, Anis
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 29 - 38
  • [3] Deep learning for aspect-based sentiment analysis: a review
    Zhu, Linan
    Xu, Minhao
    Bao, Yinwei
    Xu, Yifei
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [4] A robust approach for aspect-based sentiment analysis using deep learning and domain ontologies
    Sharma, Srishti
    Saraswat, Mala
    ELECTRONIC LIBRARY, 2024, 42 (03): : 498 - 518
  • [5] Applying Deep Learning Approach to Targeted Aspect-based Sentiment Analysis for Restaurant Domain
    Khine, Win Lei Kay
    Aung, Nyein Thwet Thwet
    2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), 2019, : 206 - 211
  • [6] Aspect-Based Financial Sentiment Analysis using Deep Learning
    Jangid, Hitkul
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Zimmermann, Roger
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1961 - 1966
  • [7] Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods
    Liu, Haoyue
    Chatterjee, Ishani
    Zhou, MengChu
    Lu, Xiaoyu Sean
    Abusorrah, Abdullah
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (06): : 1358 - 1375
  • [8] Aspect-Based Sentiment Analysis of Vietnamese Texts with Deep Learning
    Long Mai
    Bac Le
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 149 - 158
  • [9] Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review
    Do, Hai Ha
    Prasad, P. W. C.
    Maag, Angelika
    Alsadoon, Abeer
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 118 : 272 - 299
  • [10] A Survey of Deep Learning Techniques for Arabic Aspect-Based Sentiment Analysis
    Alqusair, Dalal
    Taileb, Mounira
    Al-Barhamtoshy, Hassanin
    IEEE ACCESS, 2025, 13 : 25350 - 25368