Sigmalaw PBSA - A Deep Learning Model for Aspect-Based Sentiment Analysis for the Legal Domain

被引:1
|
作者
Rajapaksha, Isanka [1 ]
Mudalige, Chanika Ruchini [1 ]
Karunarathna, Dilini [1 ]
de Silva, Nisansa [1 ]
Perera, Amal Shehan [1 ]
Ratnayaka, Gathika [1 ]
机构
[1] Univ Moratuwa, Dept Comp Sci & Engn, Moratuwa, Sri Lanka
关键词
Legal information extraction; Legal domain; Aspect-based sentiment analysis; Deep learning; NLP;
D O I
10.1007/978-3-030-86472-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Legal information retrieval holds a significant importance to lawyers and legal professionals. Its significance has grown as a result of the vast and rapidly increasing amount of legal documents available via electronic means. Legal documents, which can be considered flat file databases, contain information that can be used in a variety of ways, including arguments, counter-arguments, justifications, and evidence. As a result, developing automated mechanisms for extracting important information from legal opinion texts can be regarded as an important step toward introducing artificial intelligence into the legal domain. Identifying advantageous or disadvantageous statements within these texts in relation to legal parties can be considered as a critical and time consuming task. This task is further complicated by the relevance of context in automatic legal information extraction. In this paper, we introduce a solution to predict sentiment value of sentences in legal documents in relation to its legal parties. The Proposed approach employs a fine-grained sentiment analysis (Aspect-Based Sentiment Analysis) technique to achieve this task. Sigmalaw PBSA is a novel deep learning-based model for ABSA which is specifically designed for legal opinion texts. We evaluate the Sigmalaw PBSA model and existing ABSA models on the SigmaLaw-ABSA dataset which consists of 2000 legal opinion texts fetched from a public online data base. Experiments show that our model outperforms the state-of-the-art models. We also conduct an ablation study to identify which methods are most effective for legal texts.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [21] DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis
    Xu, Hu
    Liu, Bing
    Shu, Lei
    Yu, Philip S.
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1725 - 1731
  • [22] Learning Word Embeddings for Aspect-Based Sentiment Analysis
    Duc-Hong Pham
    Anh-Cuong Le
    Thi-Kim-Chung Le
    COMPUTATIONAL LINGUISTICS, PACLING 2017, 2018, 781 : 28 - 40
  • [23] Aspect-based sentiment analysis of reviews in the domain of higher education
    Nikolic, Nikola
    Grljevic, Olivera
    Kovacevic, Aleksandar
    ELECTRONIC LIBRARY, 2020, 38 (01): : 44 - 64
  • [24] LLM Enhanced Cross Domain Aspect-based Sentiment Analysis
    Li, Shi-Chen
    Wang, Zhong-Qing
    Zhou, Guo-Dong
    Ruan Jian Xue Bao/Journal of Software, 2025, 36 (02): : 644 - 659
  • [25] Sentiment Difficulty in Aspect-Based Sentiment Analysis
    Chifu, Adrian-Gabriel
    Fournier, Sebastien
    MATHEMATICS, 2023, 11 (22)
  • [26] Unsupervised model for aspect-based sentiment analysis in Spanish
    Henríquez, Carlos
    Briceño, Freddy
    Salcedo, Dixon
    IAENG International Journal of Computer Science, 2019, 46 (03)
  • [27] Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings
    Alamoudi, Eman Saeed
    Alghamdi, Norah Saleh
    JOURNAL OF DECISION SYSTEMS, 2021, 30 (2-3) : 259 - 281
  • [28] Aspect-based Financial Sentiment Analysis with Deep Neural Networks
    Shijia, E.
    Yang, Li
    Zhang, Mohan
    Xiang, Yang
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1951 - 1954
  • [29] Is position important? deep multi-task learning for aspect-based sentiment analysis
    Zhou, Jie
    Huang, Jimmy Xiangji
    Hu, Qinmin Vivian
    He, Liang
    APPLIED INTELLIGENCE, 2020, 50 (10) : 3367 - 3378
  • [30] Is position important? deep multi-task learning for aspect-based sentiment analysis
    Jie Zhou
    Jimmy Xiangji Huang
    Qinmin Vivian Hu
    Liang He
    Applied Intelligence, 2020, 50 : 3367 - 3378