A novel biomarker selection method using multimodal neuroimaging data

被引:0
|
作者
Wang, Yue [1 ]
Yen, Pei-Shan [1 ]
Ajilore, Olusola A. [2 ]
Bhaumik, Dulal K. [1 ,2 ]
机构
[1] Univ Illinois, Div Epidemiol & Biostat, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Psychiat, Chicago, IL 60607 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
MAJOR DEPRESSIVE DISORDER; LATE-LIFE DEPRESSION; TRANSCRANIAL MAGNETIC STIMULATION; DORSOLATERAL PREFRONTAL CORTEX; CANONICAL CORRELATION-ANALYSIS; STATE FUNCTIONAL CONNECTIVITY; WHITE-MATTER ABNORMALITIES; DEFAULT MODE NETWORK; CINGULATE CORTEX; BRAIN CONNECTIVITY;
D O I
10.1371/journal.pone.0289401
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying biomarkers is essential to obtain the optimal therapeutic benefit while treating patients with late-life depression (LLD). We compare LLD patients with healthy controls (HC) using resting-state functional magnetic resonance and diffusion tensor imaging data to identify neuroimaging biomarkers that may be potentially associated with the underlying pathophysiology of LLD. We implement a Bayesian multimodal local false discovery rate approach for functional connectivity, borrowing strength from structural connectivity to identify disrupted functional connectivity of LLD compared to HC. In the Bayesian framework, we develop an algorithm to control the overall false discovery rate of our findings. We compare our findings with the literature and show that our approach can better detect some regions never discovered before for LLD patients. The Hub of our discovery related to various neurobehavioral disorders can be used to develop behavioral interventions to treat LLD patients who do not respond to antidepressants.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Collection and Analysis of Multimodal Data for SUDEP Biomarker Discovery
    Threeanaew, Wanchat
    MacDonald, James
    Sinha, Amit
    Kaffashi, Farhad
    Lhatoo, Samden D.
    Loparo, Kenneth A.
    IEEE SENSORS LETTERS, 2019, 3 (01)
  • [42] Metabolomics Biomarker Discovery Using Multimodal Memetic Algorithm and Multivariate Mutual Information Based Feature Selection
    Zhou, Jiarui
    Ji, Zhen
    Zhu, Zexuan
    He, Shan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3193 - 3199
  • [43] A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
    Bi, Yuda
    Abrol, Anees
    Fu, Zening
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2024, 45 (17)
  • [44] Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
    Daehne, Sven
    Biessmann, Felix
    Samek, Wojciech
    Haufe, Stefan
    Goltz, Dominique
    Gundlach, Christopher
    Villringer, Arno
    Fazli, Siamac
    Muller, Klaus-Robert
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1507 - 1530
  • [45] Predicting Antidepressant Effects of Ketamine: the Role of the Pregenual Anterior Cingulate Cortex as a Multimodal Neuroimaging Biomarker
    Weigand, Anne
    Gartner, Matti
    Scheidegger, Milan
    Wyss, Patrik O.
    Henning, Anke
    Seifritz, Erich
    Stippl, Anna
    Herrera-Melendez, Ana
    Bajbouj, Malek
    Aust, Sabine
    Grimm, Simone
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2022, 25 (12): : 1003 - 1013
  • [46] PRATEEK: Integration of Multimodal Neuroimaging Data to Facilitate Advanced Brain Research
    Goel, Anshika
    Roy, Saurav
    Punjabi, Khushboo
    Mishra, Ritwick
    Tripathi, Manjari
    Shukla, Deepika
    Mandal, Pravat K.
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 83 (01) : 305 - 317
  • [47] A Novel Reversible Data-Hiding Method Using Adaptive Rhombus Prediction and Pixel Selection
    Nguyen, Thai-Son
    International Journal of Network Security, 2021, 23 (04) : 725 - 733
  • [48] A Novel Feature Selection Method for Classification of Medical Data Using Filters, Wrappers, and Embedded Approaches
    Bashir, Saba
    Khattak, Irfan Ullah
    Khan, Aihab
    Khan, Farhan Hassan
    Gani, Abdullah
    Shiraz, Muhammad
    COMPLEXITY, 2022, 2022
  • [49] Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data
    Falakshahi, Haleh
    Rokham, Hooman
    Miller, Robyn
    Liu, Jean
    Calhoun, Vince D.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [50] Classifying mood disorders using multiple kernel learning on multimodal neuroimaging data: translating biological data into a diagnostic tool for depression
    Vai, B.
    Parenti, L.
    Cara, C.
    Verga, C.
    Bollettini, I.
    Poletti, S.
    Colombo, C.
    Benedetti, F.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S40 - S41