A novel biomarker selection method using multimodal neuroimaging data

被引:0
|
作者
Wang, Yue [1 ]
Yen, Pei-Shan [1 ]
Ajilore, Olusola A. [2 ]
Bhaumik, Dulal K. [1 ,2 ]
机构
[1] Univ Illinois, Div Epidemiol & Biostat, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Psychiat, Chicago, IL 60607 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
MAJOR DEPRESSIVE DISORDER; LATE-LIFE DEPRESSION; TRANSCRANIAL MAGNETIC STIMULATION; DORSOLATERAL PREFRONTAL CORTEX; CANONICAL CORRELATION-ANALYSIS; STATE FUNCTIONAL CONNECTIVITY; WHITE-MATTER ABNORMALITIES; DEFAULT MODE NETWORK; CINGULATE CORTEX; BRAIN CONNECTIVITY;
D O I
10.1371/journal.pone.0289401
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying biomarkers is essential to obtain the optimal therapeutic benefit while treating patients with late-life depression (LLD). We compare LLD patients with healthy controls (HC) using resting-state functional magnetic resonance and diffusion tensor imaging data to identify neuroimaging biomarkers that may be potentially associated with the underlying pathophysiology of LLD. We implement a Bayesian multimodal local false discovery rate approach for functional connectivity, borrowing strength from structural connectivity to identify disrupted functional connectivity of LLD compared to HC. In the Bayesian framework, we develop an algorithm to control the overall false discovery rate of our findings. We compare our findings with the literature and show that our approach can better detect some regions never discovered before for LLD patients. The Hub of our discovery related to various neurobehavioral disorders can be used to develop behavioral interventions to treat LLD patients who do not respond to antidepressants.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multimodal functional neuroimaging using MEG and fMRI
    Singh, K. D.
    JOURNAL OF PSYCHOPHYSIOLOGY, 2006, 20 (04) : 332 - 332
  • [22] A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder
    Achalia, Rashmin
    Sinha, Anannya
    Jacob, Arpitha
    Achalia, Garimaa
    Kaginalkar, Varsha
    Venkatasubramanian, Ganesan
    Rao, Naren P.
    ASIAN JOURNAL OF PSYCHIATRY, 2020, 50
  • [23] Thresholding for biomarker selection in multivariate data using Higher Criticism
    Wehrens, Ron
    Franceschi, Pietro
    MOLECULAR BIOSYSTEMS, 2012, 8 (09) : 2339 - 2346
  • [24] A novel class dependent feature selection method for cancer biomarker discovery
    Zhou, Wengang
    Dickerson, Julie A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 47 : 66 - 75
  • [25] Regularized ROC method for disease classification and biomarker selection with microarray data
    Ma, SG
    Huang, J
    BIOINFORMATICS, 2005, 21 (24) : 4356 - 4362
  • [26] Voxel-Wise Feature Selection Method for CNN Binary Classification of Neuroimaging Data
    Messina, Domenico
    Borrelli, Pasquale
    Russo, Paolo
    Salvatore, Marco
    Aiello, Marco
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [27] A Novel Fusion Mechanism for Multimodal Neuroimaging of Focal Cortical Dysplasia
    Lu, Yanzhu
    Yu, Hao
    Cao, Gongpeng
    Zhang, Manli
    Kang, Guixia
    Cai, Lixin
    2023 10TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2023, 2023, : 28 - 37
  • [28] Spatially Adaptive Varying Correlation Analysis for Multimodal Neuroimaging Data
    Li, Lexin
    Kang, Jian
    Lockhart, Samuel N.
    Adams, Jenna
    Jagust, William J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 113 - 123
  • [29] Coupled support tensor machine classification for multimodal neuroimaging data
    Li, Peide
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    Maiti, Tapabrata
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 797 - 818
  • [30] Extracting novel information from neuroimaging data using neural fields
    Pinotsis, Dimitris A.
    Friston, Karl J.
    EPJ NONLINEAR BIOMEDICAL PHYSICS, 2014, 2 (01):