Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data

被引:68
|
作者
Daehne, Sven [1 ]
Biessmann, Felix [2 ]
Samek, Wojciech [3 ]
Haufe, Stefan [1 ,4 ]
Goltz, Dominique [5 ,6 ]
Gundlach, Christopher [5 ,6 ]
Villringer, Arno [6 ,7 ,8 ,9 ,10 ]
Fazli, Siamac [11 ]
Muller, Klaus-Robert [1 ,11 ]
机构
[1] Berlin Inst Technol, Dept Comp Sci, Machine Learning Grp, D-10623 Berlin, Germany
[2] Amazon, D-10178 Berlin, Germany
[3] Fraunhofer Heinrich Hertz Inst, Dept Video Coding & Analyt, Machine Learning Grp, D-10587 Berlin, Germany
[4] Columbia Univ, Lab Intelligent Imaging & Neural Comp, New York, NY 10027 USA
[5] Univ Leipzig, Inst Psychol, D-04109 Leipzig, Germany
[6] Max Planck Inst Human Cognit & Brain Sci, Dept Neurol, D-04103 Leipzig, Germany
[7] Charite, Mind Brain Inst, D-10117 Berlin, Germany
[8] Charite, Sch Mind & Brain, D-10117 Berlin, Germany
[9] Humboldt Univ, D-10117 Berlin, Germany
[10] Univ Leipzig, Clin Cognit Neurol, D-04109 Leipzig, Germany
[11] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; multimodal neuroimaging; data fusion; review; EEG; MEG; fMRI; fNIRS; CANONICAL CORRELATION-ANALYSIS; SIMULTANEOUS EEG-FMRI; INDEPENDENT COMPONENT ANALYSIS; BLIND SOURCE SEPARATION; HEMODYNAMIC-RESPONSE; NEURONAL OSCILLATIONS; ELECTRICAL-ACTIVITY; SOURCE LOCALIZATION; CORTICAL ACTIVITY; ARTIFACT REMOVAL;
D O I
10.1109/JPROC.2015.2425807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multimodal data are ubiquitous in engineering, communications, robotics, computer vision, or more generally speaking in industry and the sciences. All disciplines have developed their respective sets of analytic tools to fuse the information that is available in all measured modalities. In this paper, we provide a review of classical as well as recent machine learning methods (specifically factor models) for fusing information from functional neuroimaging techniques such as: LFP, EEG, MEG, fNIRS, and fMRI. Early and late fusion scenarios are distinguished, and appropriate factor models for the respective scenarios are presented along with example applications from selected multimodal neuroimaging studies. Further emphasis is given to the interpretability of the resulting model parameters, in particular by highlighting how factor models relate to physical models needed for source localization. The methods we discuss allow for the extraction of information from neural data, which ultimately contributes to 1) better neuroscientific understanding; 2) enhance diagnostic performance; and 3) discover neural signals of interest that correlate maximally with a given cognitive paradigm. While we clearly study the multimodal functional neuroimaging challenge, the discussed machine learning techniques have a wide applicability, i.e., in general data fusion, and may thus be informative to the general interested reader.
引用
收藏
页码:1507 / 1530
页数:24
相关论文
共 50 条
  • [1] Fusing multimodal neuroimaging data with a variational autoencoder
    Geenjaar, Eloy
    Lewis, Noah
    Fu, Zening
    Venkatdas, Rohan
    Plis, Sergey
    Calhoun, Vince
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3630 - 3633
  • [2] Quantifying performance of machine learning methods for neuroimaging data
    Jollans, Lee
    Boyle, Rory
    Artiges, Eric
    Banaschewski, Tobias
    Desrivieres, Sylvane
    Grigis, Antoine
    Martinot, Jean-Luc
    Paus, Tomas
    Smolka, Michael N.
    Walter, Henrik
    Schumann, Gunter
    Garavan, Hugh
    Whelan, Robert
    [J]. NEUROIMAGE, 2019, 199 : 351 - 365
  • [3] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Luckett, Patrick H.
    Olufawo, Michael
    Lamichhane, Bidhan
    Park, Ki Yun
    Dierker, Donna
    Verastegui, Gabriel Trevino
    Yang, Peter
    Kim, Albert H.
    Chheda, Milan G.
    Snyder, Abraham Z.
    Shimony, Joshua S.
    Leuthardt, Eric C.
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2023, 164 (02) : 309 - 320
  • [4] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Patrick H. Luckett
    Michael Olufawo
    Bidhan Lamichhane
    Ki Yun Park
    Donna Dierker
    Gabriel Trevino Verastegui
    Peter Yang
    Albert H. Kim
    Milan G. Chheda
    Abraham Z. Snyder
    Joshua S. Shimony
    Eric C. Leuthardt
    [J]. Journal of Neuro-Oncology, 2023, 164 (2) : 309 - 320
  • [5] A multimodal learning machine framework for Alzheimer's disease diagnosis based on neuropsychological and neuroimaging data
    Zhang, Meiwei
    Cui, Qiushi
    Lü, Yang
    Yu, Weihua
    Li, Wenyuan
    [J]. Computers and Industrial Engineering, 197
  • [6] Prediction of anxious depression using multimodal neuroimaging and machine learning
    Zhou, Enqi
    Wang, Wei
    Ma, Simeng
    Xie, Xinhui
    Kang, Lijun
    Xu, Shuxian
    Deng, Zipeng
    Gong, Qian
    Nie, Zhaowen
    Yao, Lihua
    Bu, Lihong
    Wang, Fei
    Liu, Zhongchun
    [J]. NEUROIMAGE, 2024, 285
  • [7] Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data
    Ye, Kai
    Tang, Haoteng
    Dai, Siyuan
    Guo, Lei
    Liu, Johnny Yuehan
    Wang, Yalin
    Leow, Alex
    Thompson, Paul M.
    Huang, Heng
    Zhan, Liang
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 138 - 148
  • [8] Coupled support tensor machine classification for multimodal neuroimaging data
    Li, Peide
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    Maiti, Tapabrata
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 797 - 818
  • [9] Applying machine learning to multimodal neuroimaging data to predict visual episodic memory performance in multiple sclerosis
    Buyukturkoglu, K.
    Li, Y.
    Tozlu, C.
    Kuceyeski, A.
    Sumowski, J.
    Leavitt, V.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 118 - 118
  • [10] Methods for detecting functional classifications in neuroimaging data
    Bowman, FD
    Patel, R
    Lu, CX
    [J]. HUMAN BRAIN MAPPING, 2004, 23 (02) : 109 - 119