Deep learning bias correction of GEMS tropospheric NO2: A comparative validation of NO2 from GEMS and TROPOMI using Pandora observations

被引:4
|
作者
Ghahremanloo, Masoud [1 ]
Choi, Yunsoo [1 ]
Singh, Deveshwar [1 ]
机构
[1] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA
关键词
Satellite remote sensing; Deep learning bias correction; Geostationary Environment Monitoring; Spectrometer (GEMS); TROPOMI; Pandora observation; Tropospheric NO 2; AIR-QUALITY; SATELLITE RETRIEVALS; EMISSIONS; ABSORPTION; CHEMISTRY; AIRBORNE; IMPACT; OZONE; SHIPS; MODEL;
D O I
10.1016/j.envint.2024.108818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite advancements in satellite instruments, such as those in geostationary orbit, biases continue to affect the accuracy of satellite data. This research pioneers the use of a deep convolutional neural network to correct bias in tropospheric column density of NO2 (TCDNO2) from the Geostationary Environment Monitoring Spectrometer (GEMS) during 2021-2023. Initially, we validate GEMS TCDNO2 against Pandora observations and compare its accuracy with measurements from the TROPOspheric Monitoring Instrument (TROPOMI). GEMS displays acceptable accuracy in TCDNO2 measurements, with a correlation coefficient (R) of 0.68, an index of agreement (IOA) of 0.79, and a mean absolute bias (MAB) of 5.73321 x 1015 molecules/cm2, though it is not highly accurate. The evaluation showcases moderate to high accuracy of GEMS TCDNO2 across all Pandora stations, with R values spanning from 0.46 to 0.80. Comparing TCDNO2 from GEMS and TROPOMI at TROPOMI overpass time shows satisfactory performance of GEMS TCDNO2 measurements, achieving R, IOA, and MAB values of 0.71, 0.78, and 6.82182 x 1015 molecules/cm2, respectively. However, these figures are overshadowed by TROPOMI's superior accuracy, which reports R, IOA, and MAB values of 0.81, 0.89, and 3.26769 x 1015 molecules/cm2, respectively. While GEMS overestimates TCDNO2 by 52 % at TROPOMI overpass time, TROPOMI underestimates it by 9 %. The deep learning bias corrected GEMS TCDNO2 (GEMS-DL) demonstrates a marked enhancement in the accuracy of original GEMS TCDNO2 measurements. The GEMS-DL product improves R from 0.68 to 0.88, IOA from 0.79 to 0.93, MAB from 5.73321 x 1015 to 2.67659 x 1015 molecules/cm2, and reduces MAB percentage (MABP) from 64 % to 30 %. This represents a significant reduction in bias, exceeding 50 %. Although the original GEMS product overestimates TCDNO2 by 28 %, the GEMS-DL product remarkably minimizes this error, underestimating TCDNO2 by a mere 1 %. Spatial cross-validation across Pandora stations shows a significant reduction in MABP, from a range of 45 %-105.6 % in original GEMS data to 24 %-59 % in GEMS-DL.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Sensitivity analysis for the detection of NO2 plumes from seagoing ships using TROPOMI data
    Kurchaba, Solomiia
    Sokolovsky, Artur
    van Vliet, Jasper
    Verbeek, Fons J.
    Veenman, Cor J.
    REMOTE SENSING OF ENVIRONMENT, 2024, 304
  • [32] OBSERVING URBAN AEROSOLS USING CO-LOCATED NO2 ENHANCEMENT FROM TROPOMI
    Jiang, Fang-Qing
    Zeng, Zhao-Cheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5509 - 5512
  • [33] First top-down diurnal adjustment to NOx emissions inventory in Asia informed by the Geostationary Environment Monitoring Spectrometer (GEMS) tropospheric NO2 columns
    Park, Jincheol
    Choi, Yunsoo
    Jung, Jia
    Lee, Kyunghwa
    Yeganeh, Arash Kashfi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound
    Judd, Laura M.
    Al-Saadi, Jassim A.
    Szykman, James J.
    Valin, Lukas C.
    Janz, Scott J.
    Kowalewski, Matthew G.
    Eskes, Henk J.
    Veefkind, J. Pepijn
    Cede, Alexander
    Mueller, Moritz
    Gebetsberger, Manuel
    Swap, Robert
    Pierce, R. Bradley
    Nowlan, Caroline R.
    Abad, Gonzalo Gonzalez
    Nehrir, Amin
    Williams, David
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (11) : 6113 - 6140
  • [35] Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses
    Timmermans, Renske
    Segers, Arjo
    Curier, Lyana
    Abida, Rachid
    Attie, Jean-Luc
    El Amraoui, Laaziz
    Eskes, Henk
    de Haan, Johan
    Kujanpaa, Jukka
    Lahoz, William
    Nijhuis, Albert Oude
    Quesada-Ruiz, Samuel
    Ricaud, Philippe
    Veefkind, Pepijn
    Schaap, Martijin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (19) : 12811 - 12833
  • [36] Estimating daily ground-level NO2 concentrations over China based on TROPOMI observations and machine learning approach
    Long, Shuiju
    Wei, Xiaoli
    Zhang, Feng
    Zhang, Renhe
    Xu, Jian
    Wu, Kun
    Li, Qingqing
    Li, Wenwen
    ATMOSPHERIC ENVIRONMENT, 2022, 289
  • [37] Tracking NO2 emission from thermal power plants in North India using TROPOMI data
    Saw, Gautam Kumar
    Dey, Sagnik
    Kaushal, Hemant
    Lal, Kanhaiya
    ATMOSPHERIC ENVIRONMENT, 2021, 259
  • [38] Quantifying NOx Emissions from US Oil and Gas Production Regions Using TROPOMI NO2
    Dix, Barbara
    Francoeur, Colby
    Li, Meng
    Serrano-Calvo, Raquel
    Levelt, Pieternel F.
    Veefkind, J. Pepijn
    McDonald, Brian C.
    de Gouw, Joost
    ACS EARTH AND SPACE CHEMISTRY, 2022, 6 (02): : 403 - 414
  • [39] Regional Characteristics of NO2 Column Densities from Pandora Observations during the MAPS-Seoul Campaign
    Chong, Heesung
    Lee, Hana
    Koo, Ja-Ho
    Kim, Jhoon
    Jeong, Ukkyo
    Kim, Woogyung
    Kims, Sang-Woo
    Herman, Jay R.
    Abuhassan, Nader K.
    Ahn, Joon-Young
    Park, Jeong-Hoo
    Kim, Sang-Kyun
    Moon, Kyung-Jung
    Choi, Won-Jun
    Park, Sang Seo
    AEROSOL AND AIR QUALITY RESEARCH, 2018, 18 (09) : 2207 - 2219
  • [40] Derivation of Emissions From Satellite-Observed Column Amounts and Its Application to TROPOMI NO2 and CO Observations
    Sun, Kang
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (23)