Deep learning bias correction of GEMS tropospheric NO2: A comparative validation of NO2 from GEMS and TROPOMI using Pandora observations

被引:4
|
作者
Ghahremanloo, Masoud [1 ]
Choi, Yunsoo [1 ]
Singh, Deveshwar [1 ]
机构
[1] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA
关键词
Satellite remote sensing; Deep learning bias correction; Geostationary Environment Monitoring; Spectrometer (GEMS); TROPOMI; Pandora observation; Tropospheric NO 2; AIR-QUALITY; SATELLITE RETRIEVALS; EMISSIONS; ABSORPTION; CHEMISTRY; AIRBORNE; IMPACT; OZONE; SHIPS; MODEL;
D O I
10.1016/j.envint.2024.108818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite advancements in satellite instruments, such as those in geostationary orbit, biases continue to affect the accuracy of satellite data. This research pioneers the use of a deep convolutional neural network to correct bias in tropospheric column density of NO2 (TCDNO2) from the Geostationary Environment Monitoring Spectrometer (GEMS) during 2021-2023. Initially, we validate GEMS TCDNO2 against Pandora observations and compare its accuracy with measurements from the TROPOspheric Monitoring Instrument (TROPOMI). GEMS displays acceptable accuracy in TCDNO2 measurements, with a correlation coefficient (R) of 0.68, an index of agreement (IOA) of 0.79, and a mean absolute bias (MAB) of 5.73321 x 1015 molecules/cm2, though it is not highly accurate. The evaluation showcases moderate to high accuracy of GEMS TCDNO2 across all Pandora stations, with R values spanning from 0.46 to 0.80. Comparing TCDNO2 from GEMS and TROPOMI at TROPOMI overpass time shows satisfactory performance of GEMS TCDNO2 measurements, achieving R, IOA, and MAB values of 0.71, 0.78, and 6.82182 x 1015 molecules/cm2, respectively. However, these figures are overshadowed by TROPOMI's superior accuracy, which reports R, IOA, and MAB values of 0.81, 0.89, and 3.26769 x 1015 molecules/cm2, respectively. While GEMS overestimates TCDNO2 by 52 % at TROPOMI overpass time, TROPOMI underestimates it by 9 %. The deep learning bias corrected GEMS TCDNO2 (GEMS-DL) demonstrates a marked enhancement in the accuracy of original GEMS TCDNO2 measurements. The GEMS-DL product improves R from 0.68 to 0.88, IOA from 0.79 to 0.93, MAB from 5.73321 x 1015 to 2.67659 x 1015 molecules/cm2, and reduces MAB percentage (MABP) from 64 % to 30 %. This represents a significant reduction in bias, exceeding 50 %. Although the original GEMS product overestimates TCDNO2 by 28 %, the GEMS-DL product remarkably minimizes this error, underestimating TCDNO2 by a mere 1 %. Spatial cross-validation across Pandora stations shows a significant reduction in MABP, from a range of 45 %-105.6 % in original GEMS data to 24 %-59 % in GEMS-DL.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI)
    van der Velde, Ivar R.
    van der Werf, Guido R.
    Houweling, Sander
    Eskes, Henk J.
    Veefkind, J. Pepijn
    Borsdorff, Tobias
    Aben, Ilse
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (02) : 597 - 616
  • [22] Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
    Fioletov, Vitali
    Mclinden, Chris A.
    Griffin, Debora
    Zhao, Xiaoyi
    Eskes, Henk
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2025, 25 (01) : 575 - 596
  • [23] Mobile DOAS Observations of Tropospheric NO2 Using an UltraLight Trike and Flux Calculation
    Constantin, Daniel-Eduard
    Merlaud, Alexis
    Voiculescu, Mirela
    Dragomir, Carmelia
    Georgescu, Lucian
    Hendrick, Francois
    Pinardi, Gaia
    Van Roozendael, Michel
    ATMOSPHERE, 2017, 8 (04):
  • [24] Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-term Exposure to Surface NO2 over South Korea
    Jeong, Ukkyo
    Hong, Hyunkee
    REMOTE SENSING, 2021, 13 (10)
  • [25] Estimating surface NO2 concentrations over Europe using Sentinel-5P TROPOMI observations and Machine Learning
    Shetty, Shobitha
    Schneider, Philipp
    Stebel, Kerstin
    Hamer, Paul David
    Kylling, Arve
    Berntsen, Terje Koren
    REMOTE SENSING OF ENVIRONMENT, 2024, 312
  • [26] Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: the importance of accounting for the free tropospheric NO2 background
    Silvern, Rachel F.
    Jacob, Daniel J.
    Mickley, Loretta J.
    Sulprizio, Melissa P.
    Travis, Katherine R.
    Marais, Eloise A.
    Cohen, Ronald C.
    Laughner, Joshua L.
    Choi, Sungyeon
    Joiner, Joanna
    Lamsal, Lok N.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (13) : 8863 - 8878
  • [27] Analysis of the NO2 tropospheric product from S5P TROPOMI for monitoring pollution at city scale
    Prunet, Pascal
    Lezeaux, Olivier
    Camy-Peyret, Claude
    Thevenon, Herve
    CITY AND ENVIRONMENT INTERACTIONS, 2020, 8
  • [28] On validation of high-detailed mapping of tropospheric NO2 using GSA/Resurs-P observations with simulated data
    Postylyakov, Oleg, V
    Borovski, Alexander N.
    Shukurov, Karim A.
    Mukhartova, Iuliia, V
    Davydova, Marina A.
    Makarenkov, Aleksandr A.
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXV, 2020, 11531
  • [29] Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations
    Pinardi, Gaia
    Van Roozendael, Michel
    Hendrick, Francois
    Theys, Nicolas
    Abuhassan, Nader
    Bais, Alkiviadis
    Boersma, Folkert
    Cede, Alexander
    Chong, Jihyo
    Donner, Sebastian
    Drosoglou, Theano
    Dzhola, Anatoly
    Eskes, Henk
    Friess, Udo
    Granville, Jose
    Herman, Jay R.
    Holla, Robert
    Hovila, Jari
    Irie, Hitoshi
    Kanaya, Yugo
    Karagkiozidis, Dimitris
    Kouremeti, Natalia
    Lambert, Jean-Christopher
    Ma, Jianzhong
    Peters, Enno
    Piters, Ankie
    Postylyakov, Oleg
    Richter, Andreas
    Remmers, Julia
    Takashima, Hisahiro
    Tiefengraber, Martin
    Valks, Pieter
    Vlemmix, Tim
    Wagner, Thomas
    Wittrock, Folkard
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (11) : 6141 - 6174
  • [30] Supervised Segmentation of NO2 Plumes from Individual Ships Using TROPOMI Satellite Data
    Kurchaba, Solomiia
    van Vliet, Jasper
    Verbeek, Fons J.
    Meulman, Jacqueline J.
    Veenman, Cor J.
    REMOTE SENSING, 2022, 14 (22)