Sobolev improvements on sharp Rellich inequalities

被引:0
|
作者
Barbatis, Gerassimos [1 ]
Tertikas, Achilles [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[3] Fdn Res & Technol, Inst Appl & Computat Math, 100 Nikolaou Plastira Str, Iraklion 71110, Greece
关键词
Rellich inequality; Sobolev inequality; best constant; CONSTANTS;
D O I
10.4171/JST/508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two Rellich inequalities for the bilaplacian, that is, for integral(Delta u)(2)dx, the one involving vertical bar del u vertical bar and the other involving vertical bar u vertical bar at the RHS. In this article, we consider these inequalities with sharp constants and obtain sharp Sobolev-type improvements. More precisely, in our first result, we improve the Rellich inequality with vertical bar del u vertical bar obtained by Beckner in dimensions n = 3, 4 by a sharp Sobolev term, thus complementing existing results for the case n >= 5 . In the second theorem, the sharp constant of the Sobolev improvement for the Rellich inequality with vertical bar u vertical bar is obtained.
引用
收藏
页码:641 / 663
页数:23
相关论文
共 50 条
  • [21] Best constants in the Hardy-Rellich inequalities and related improvements
    Tertikas, A.
    Zographopoulos, N. B.
    ADVANCES IN MATHEMATICS, 2007, 209 (02) : 407 - 459
  • [22] Sharp trace Hardy-Sobolev inequalities and fractional Hardy-Sobolev inequalities
    Tzirakis, Konstantinos
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4513 - 4539
  • [23] One-dimensional sharp discrete Hardy-Rellich inequalities
    Huang, Xia
    Ye, Dong
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [24] Sharp Sobolev inequalities for vector valued maps
    Emmanuel Hebey
    Mathematische Zeitschrift, 2006, 253 : 681 - 708
  • [25] Some general forms of sharp Sobolev inequalities
    Zhu, MJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) : 75 - 120
  • [26] SHARP L(P)-WEIGHTED SOBOLEV INEQUALITIES
    PEREZ, C
    ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) : 809 - &
  • [27] Sharp convex Lorentz-Sobolev inequalities
    Ludwig, Monika
    Xiao, Jie
    Zhang, Gaoyong
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 169 - 197
  • [28] Sharp Sobolev Inequalities via Projection Averages
    Philipp Kniefacz
    Franz E. Schuster
    The Journal of Geometric Analysis, 2021, 31 : 7436 - 7454
  • [29] The sharp Sobolev and isoperimetric inequalities split twice
    Xiao, Jie
    ADVANCES IN MATHEMATICS, 2007, 211 (02) : 417 - 435
  • [30] Sharp Sobolev Inequalities Involving Boundary Terms
    Y.Y. Li
    M. Zhu
    Geometric & Functional Analysis GAFA, 1998, 8 : 59 - 87