Sobolev improvements on sharp Rellich inequalities

被引:0
|
作者
Barbatis, Gerassimos [1 ]
Tertikas, Achilles [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[3] Fdn Res & Technol, Inst Appl & Computat Math, 100 Nikolaou Plastira Str, Iraklion 71110, Greece
关键词
Rellich inequality; Sobolev inequality; best constant; CONSTANTS;
D O I
10.4171/JST/508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two Rellich inequalities for the bilaplacian, that is, for integral(Delta u)(2)dx, the one involving vertical bar del u vertical bar and the other involving vertical bar u vertical bar at the RHS. In this article, we consider these inequalities with sharp constants and obtain sharp Sobolev-type improvements. More precisely, in our first result, we improve the Rellich inequality with vertical bar del u vertical bar obtained by Beckner in dimensions n = 3, 4 by a sharp Sobolev term, thus complementing existing results for the case n >= 5 . In the second theorem, the sharp constant of the Sobolev improvement for the Rellich inequality with vertical bar u vertical bar is obtained.
引用
收藏
页码:641 / 663
页数:23
相关论文
共 50 条
  • [31] On the sharp constants in the regional fractional Sobolev inequalities
    Rupert L. Frank
    Tianling Jin
    Wei Wang
    Partial Differential Equations and Applications, 2025, 6 (2):
  • [32] Sharp trace inequalities on fractional Sobolev spaces
    Pak, Hee Chul
    Park, Young Ja
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 761 - 763
  • [33] Sharp Sobolev inequalities for vector valued maps
    Hebey, Emmanuel
    MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 681 - 708
  • [34] A NOTE ON EXTREMAL FUNCTIONS FOR SHARP SOBOLEV INEQUALITIES
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [35] Symmetrization and Sharp Sobolev Inequalities in Metric Spaces
    Kalis, Jan
    Milman, Mario
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (02): : 499 - 515
  • [36] Homogeneous sharp Sobolev inequalities on product manifolds
    Ceccon, J
    Montenegro, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 277 - 300
  • [37] From Brunn–Minkowski to sharp Sobolev inequalities
    S. G. Bobkov
    M. Ledoux
    Annali di Matematica Pura ed Applicata, 2008, 187 : 369 - 384
  • [39] Weighted Hardy and Rellich Types Inequalities on the Heisenberg Group with Sharp Constants
    Abimbola Abolarinwa
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 677 - 698
  • [40] Some sharp Sobolev inequalities on BV (Rn)
    Dai, Jin
    Mou, Shuang
    AIMS MATHEMATICS, 2022, 7 (09): : 16851 - 16868