Detection of the irrotational boundary using machine learning methods

被引:1
|
作者
Tao, Shancong [1 ]
Xie, Yuanliang [1 ]
Shi, Xiaotian [2 ]
Zhou, Yi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Peoples R China
[2] China Acad Aerosp Aerodynam, Inst 2, Beijing 100074, Peoples R China
基金
中国国家自然科学基金;
关键词
TURBULENT/NON-TURBULENT INTERFACE; IDENTIFICATION; ENTRAINMENT; LAYERS; FLOWS; FIELD;
D O I
10.1063/5.0214605
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Four machine learning methods, i.e., self-organizing map (SOM), Gaussian mixture model (GMM), eXtreme gradient boosting (XGBoost), and contrastive learning (CL), are used to detect the irrotational boundary (IB), which represents the outer edge of the turbulent and non-turbulent interface layer. To accurately evaluate the detection methods, high-resolution databases from direct numerical simulations of a temporally evolving turbulent plane jet are used. It is found that except for the SOM method, the general contour of the IB appears to be effectively captured using the GMM, XGBoost, and CL methods, which indicate the turbulent and non-turbulent regions can be roughly recognized. Furthermore, the intrinsic features of the detected IB using the GMM, XGBoost, and the CL methods are quantitatively evaluated. Unlike the conventional vorticity norm method, the three machine learning methods do not rely on a single threshold of vorticity magnitude to separate the turbulent and non-turbulent regions. A small part of the detected IB using the three machine learning methods is characterized by the rotational motions, which are expected to be only found inside the turbulent sublayer and turbulent core region. Compared to the vorticity norm and XGBoost methods, the fractal dimensions of the IB detected by the GMM and CL methods are relatively small, which are related to the missing detection of some highly contorted elements. With the three machine learning methods, a large part of the detected IB is characterized by a convex shape, similarly as with the vorticity norm. However, the probability density function profiles of the local curvature of the detected IB differ greatly between the three machine learning methods and the vorticity norm. A mild variation of the mean conditional distributions of the vorticity magnitude can be observed across the detected IB by the three machine learning methods. This study first implies that using the machine learning methods the turbulent and non-turbulent regions can be roughly distinguished, but it is still challenging to obtain the intrinsic features of the detected IB.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Detection of child depression using machine learning methods
    Haque, Umme Marzia
    Kabir, Enamul
    Khanam, Rasheda
    PLOS ONE, 2021, 16 (12):
  • [2] Phishing URL detection using machine learning methods
    Ahammad, S. K. Hasane
    Kale, Sunil D.
    Upadhye, Gopal D.
    Pande, Sandeep Dwarkanath
    Babu, E. Venkatesh
    Dhumane, Amol, V
    Bahadur, Dilip Kumar Jang
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [3] Medicare Fraud Detection using Machine Learning Methods
    Bauder, Richard A.
    Khoshgoftaar, Taghi M.
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 858 - 865
  • [4] Detection DDOS Attacks Using Machine Learning Methods
    Aytac, Tugba
    Aydin, Muhammed Ali
    Zaim, Abdul Halim
    ELECTRICA, 2020, 20 (02): : 159 - 167
  • [5] Detection of physical activity using machine learning methods
    Denes-Fazakas, Lehel
    Szilagyi, Laszlo
    Tasic, Jelena
    Kovacs, Levente
    Eigner, Gyorgy
    2020 IEEE 20TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2020,
  • [6] CROP FIELD BOUNDARY DETECTION AND CLASSIFICATION USING MACHINE LEARNING
    Bhavana, D.
    Jayaraju, Mylapalli
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (01): : 519 - 534
  • [7] Automatic video shot boundary detection using machine learning
    Ren, W
    Singh, S
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 285 - 292
  • [8] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [9] Epileptic seizure detection using hybrid machine learning methods
    Abdulhamit Subasi
    Jasmin Kevric
    M. Abdullah Canbaz
    Neural Computing and Applications, 2019, 31 : 317 - 325
  • [10] Detection of Driver Cognitive Distraction Using Machine Learning Methods
    Misra, Apurva
    Samuel, Siby
    Cao, Shi
    Shariatmadari, Khatereh
    IEEE ACCESS, 2023, 11 : 18000 - 18012