Separablilty of metric measure spaces and choice axioms

被引:0
|
作者
Howard, Paul [1 ]
机构
[1] Eastern Michigan Univ, Dept Math & Stat, Ypsilanti, MI 48197 USA
关键词
Axiom of choice; Weak axioms of choice; Well-ordered set; Fraenkel-Mostowski (FM) permutation model of; Borel measure;
D O I
10.1007/s00153-024-00931-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In set theory without the Axiom of Choice we prove that the assertion "For every metric space (X, d) with a Borel measure mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} such that the measure of every open ball is positive and finite, (X, d) is separable.' is implied by the axiom of choice for countable collections of sets and implies the axiom of choice for countable collections of finite sets. We also show that neither implication is reversible in Zermelo-Fraenkel set theory weakend to permit the existence of atoms and that the second implication is not reversible in Zermelo-Fraenkel set theory. This gives an answer to a question of Dybowski and G & oacute;rka (Arch Math Logic 62:735-749, 2023. https://doi.org/10.1007/s00153-023-00868-4).
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 50 条
  • [41] The continuity equation on metric measure spaces
    Gigli, Nicola
    Han, Bang-Xian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (1-2) : 149 - 177
  • [42] The ∞-Poincare Inequality in Metric Measure Spaces
    Durand-Cartagena, Estibalitz
    Jaramillo, Jesus A.
    Shanmugalingam, Nageswari
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 63 - 85
  • [43] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243
  • [44] A new approach to Sobolev spaces in metric measure spaces
    Sjodin, Tomas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 194 - 237
  • [45] Heat kernels and Besov spaces on metric measure spaces
    Jun Cao
    Alexander Grigor’yan
    Journal d'Analyse Mathématique, 2022, 148 : 637 - 680
  • [46] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [47] GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE
    Guliyev V.
    Samko S.
    Umarkhadzhiev S.
    Journal of Mathematical Sciences, 2023, 271 (4) : 568 - 582
  • [48] ON THE REGULARITY OF THE FUZZY MEASURE ON METRIC FUZZY MEASURE-SPACES
    WU, CX
    HA, MH
    FUZZY SETS AND SYSTEMS, 1994, 66 (03) : 373 - 379
  • [49] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [50] Musielak-Orlicz-Sobolev spaces on metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 435 - 474