Separablilty of metric measure spaces and choice axioms

被引:0
|
作者
Howard, Paul [1 ]
机构
[1] Eastern Michigan Univ, Dept Math & Stat, Ypsilanti, MI 48197 USA
关键词
Axiom of choice; Weak axioms of choice; Well-ordered set; Fraenkel-Mostowski (FM) permutation model of; Borel measure;
D O I
10.1007/s00153-024-00931-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In set theory without the Axiom of Choice we prove that the assertion "For every metric space (X, d) with a Borel measure mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} such that the measure of every open ball is positive and finite, (X, d) is separable.' is implied by the axiom of choice for countable collections of sets and implies the axiom of choice for countable collections of finite sets. We also show that neither implication is reversible in Zermelo-Fraenkel set theory weakend to permit the existence of atoms and that the second implication is not reversible in Zermelo-Fraenkel set theory. This gives an answer to a question of Dybowski and G & oacute;rka (Arch Math Logic 62:735-749, 2023. https://doi.org/10.1007/s00153-023-00868-4).
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 50 条
  • [21] Quasiconformality and quasisymmetry in metric measure spaces
    Tyson, J
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1998, 23 (02): : 525 - 548
  • [22] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [23] Coercive inequalities on metric measure spaces
    Hebisch, W.
    Zegarlinski, B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 814 - 851
  • [24] ON MEASURE DERIVATION IN METRIC-SPACES
    ZANZOTTO, PA
    MATHEMATIKA, 1989, 36 (72) : 349 - 358
  • [25] Hardy inequalities on metric measure spaces
    Ruzhansky, Michael
    Verma, Daulti
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223):
  • [26] An alternative capacity in metric measure spaces
    Martio O.
    Journal of Mathematical Sciences, 2021, 258 (3) : 303 - 312
  • [27] CANTOR SETS IN METRIC MEASURE SPACES
    GELBAUM, BR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (02) : 341 - &
  • [28] The continuity equation on metric measure spaces
    Nicola Gigli
    Bang-Xian Han
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 149 - 177
  • [29] A differentiable structure for metric measure spaces
    Keith, S
    ADVANCES IN MATHEMATICS, 2004, 183 (02) : 271 - 315
  • [30] Quasi-metric spaces with measure
    Stojmirovic, Aleksandar
    Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02): : 655 - 671