Profiling Dynamic Patterns of Single-Cell Motility

被引:1
|
作者
Maity, Debonil [1 ,2 ]
Sivakumar, Nikita [1 ,2 ]
Kamat, Pratik [2 ,3 ]
Zamponi, Nahuel [4 ]
Min, Chanhong [1 ,2 ]
Du, Wenxuan [2 ,3 ]
Jayatilaka, Hasini [2 ]
Johnston, Adrian [2 ,3 ]
Starich, Bartholomew [2 ,3 ]
Agrawal, Anshika [3 ]
Riley, Deanna [2 ]
Venturutti, Leandro [5 ]
Melnick, Ari [4 ]
Cerchietti, Leandro [4 ]
Walston, Jeremy [2 ,6 ]
Phillip, Jude M. [1 ,2 ,3 ,7 ]
机构
[1] Johns Hopkins Univ, Biomed Engn Dept, Baltimore, MD 21212 USA
[2] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD 21212 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21212 USA
[4] Weill Cornell Med, Dept Med, Div Hematol & Med Oncol, New York, NY 10065 USA
[5] Univ British Columbia, British Columbia Canc Res Inst, Ctr Lymphoid Canc, Dept Pathol, Vancouver, BC V6T 1Z4, Canada
[6] Johns Hopkins Sch Med, Dept Med Geriatr & Gerontol, Baltimore, MD 21224 USA
[7] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21287 USA
基金
美国国家卫生研究院;
关键词
cell motility; high-throughput cell phenotyping; single-cell behaviors; TUMOR HETEROGENEITY; MIGRATION; CANCER; OMICS;
D O I
10.1002/advs.202400918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations. Authors present CaMI, a novel computational framework designed to leverage single-cell motility to deduce novel biological insights. CaMI identifies distinct spatio-temporal behaviors of cells to enable robust classification of cell motility patterns. Furthermore, CaMI provides a means to directly compute cellular heterogeneity, quantify single-cell behaviors across multiple conditions, and a visualization scheme for direct interpretation of emergent cell behaviors. image
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Single-cell profiling of microbes
    Tang, Lei
    NATURE METHODS, 2021, 18 (04) : 334 - 334
  • [2] Single-cell profiling of microbes
    Lei Tang
    Nature Methods, 2021, 18 : 334 - 334
  • [3] Migration of isogenic cell lines quantified by dynamic multivariate analysis of single-cell motility
    Harris, Mark P.
    Kim, Eric
    Weidow, Brandy
    Wikswo, John P.
    Quaranta, Vito
    CELL ADHESION & MIGRATION, 2008, 2 (02) : 127 - 136
  • [4] Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells
    An, Xingyue
    Sendra, Victor G.
    Liadi, Ivan
    Ramesh, Balakrishnan
    Romain, Gabrielle
    Haymaker, Cara
    Martinez-Paniagua, Melisa
    Lu, Yanbin
    Radvanyi, Laszlo G.
    Roysam, Badrinath
    Varadarajan, Navin
    PLOS ONE, 2017, 12 (08):
  • [5] Multiomic dynamic single-cell profiling of CAR T cell populations associated with efficacy
    Rezvan, Ali
    Romain, Gabrielle
    Fathi, Mohsen
    Heeke, Darren
    Martinez-Paniagua, Melisa
    An, Xingyue
    Bandey, Irfan N.
    Liadi, Ivan
    Cooper, Laurence J. N.
    Singh, Harjeet
    Bot, Adrian
    Neelapu, Sattva
    Varadarajan, Navin
    JOURNAL OF IMMUNOLOGY, 2022, 208 (01):
  • [6] Cell motility in a new single-cell wound model
    Ohtera, K
    Luo, ZP
    Couvreur, PJJ
    An, KN
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2001, 37 (07) : 414 - 418
  • [7] Cell motility in a new single-cell wound model
    Ohtera K.
    Luo Z.-P.
    Couvreur P.J.J.
    An K.-N.
    In Vitro Cellular & Developmental Biology - Animal, 2001, 37 (7) : 414 - 418
  • [8] The potential of single-cell profiling in plants
    Idan Efroni
    Kenneth D. Birnbaum
    Genome Biology, 17
  • [9] SINGLE-CELL APPROACHES TO IMMUNE PROFILING
    Landhuis, Esther
    NATURE, 2018, 557 (7706) : 595 - 597
  • [10] Single-cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    SCIENCE, 2002, 297 (5582) : 836 - 840