Toward practical lithium-sulfur batteries

被引:6
|
作者
Qian, Weiwei [1 ,2 ]
Guo, Yawei [1 ,3 ]
Zuo, Weijing [1 ]
Wu, Xiangkun [1 ]
Zhang, Lan [1 ]
机构
[1] Inst Proc Engn, Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Henan Univ, Zhengzhou Inst Emerging Ind Technol, Longzihu New Energy Lab, Zhengzhou 450000, Peoples R China
[3] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
LI-S BATTERIES; ENERGY-DENSITY; ORGANOSULFUR COMPOUNDS; CATHODE MATERIAL; ELECTROLYTE; PERFORMANCE; SOLVENT; BINDER; CHEMISTRY; DESIGN;
D O I
10.1039/d4qm00180j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As one of the most promising energy-storage devices, lithium-sulfur batteries (LSBs) have been intensively studied and are currently on the edge of practical applications. Ampere hour (A h) level pouch cells are being prepared; however, they still face multiple challenges such as a low practical energy density, short cycle life, and underlying safety issues. The main reasons for these are due to the contradictions between the battery kinetics and electrolyte/sulfur (E/S) ratio, while the utilization of the metal lithium anode also raises possible dendrite concerns. In this review, we summarize the strategy to realize high-loading cathodes and a lean electrolyte for LSBs. In addition, solid-state LSBs are briefly discussed. Hopefully, this work may promote further advances in practical Li-S batteries. A cathode with an areal capacity of more than 5 mA h cm-2 is crucial for practical Li-S batteries. Besides, reducing the electrolyte weight ratio, in both liquid and solid-state Li-S batteries, is also important.
引用
收藏
页码:2556 / 2577
页数:22
相关论文
共 50 条
  • [41] Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries
    Li, Gaoran
    Lu, Fei
    Dou, Xiaoyuan
    Wang, Xin
    Luo, Dan
    Sun, Hao
    Yu, Aiping
    Chen, Zhongwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) : 3583 - 3592
  • [42] Lithium Bond Chemistry in Lithium-Sulfur Batteries
    Hou, Ting-Zheng
    Xu, Wen-Tao
    Chen, Xiang
    Peng, Hong-Jie
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (28) : 8178 - 8182
  • [43] Lithium-air and lithium-sulfur batteries
    Bruce, Peter G.
    Hardwick, Laurence J.
    Abraham, K. M.
    MRS BULLETIN, 2011, 36 (07) : 506 - 512
  • [44] Cationic lithium polysulfides in lithium-sulfur batteries
    Song, Yun-Wei
    Shen, Liang
    Yao, Nan
    Li, Xi-Yao
    Bi, Chen-Xi
    Li, Zheng
    Zhou, Ming-Yue
    Zhang, Xue-Qiang
    Chen, Xiang
    Li, Bo-Quan
    Huang, Jia-Qi
    Zhang, Qiang
    CHEM, 2022, 8 (11): : 3031 - 3050
  • [45] Lithium-air and lithium-sulfur batteries
    Peter G. Bruce
    Laurence J. Hardwick
    K. M. Abraham
    MRS Bulletin, 2011, 36 : 506 - 512
  • [46] BUILDING LITHIUM-SULFUR BATTERIES THAT LAST
    Bourzac, Katherine
    CHEMICAL & ENGINEERING NEWS, 2013, 91 (49) : 11 - 11
  • [47] Permselective membranes in lithium-sulfur batteries
    Shaibani, Mahdokht
    Hollenkamp, Anthony F.
    Hill, Matthew R.
    Majumder, Mainak
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2017, 16 : 31 - 38
  • [48] Graphene materials for lithium-sulfur batteries
    Yu, Mingpeng
    Li, Rui
    Wu, Mingmao
    Shi, Gaoquan
    ENERGY STORAGE MATERIALS, 2015, 1 : 51 - 73
  • [49] Anodes for Rechargeable Lithium-Sulfur Batteries
    Cao, Ruiguo
    Xu, Wu
    Lv, Dongping
    Xiao, Jie
    Zhang, Ji-Guang
    ADVANCED ENERGY MATERIALS, 2015, 5 (16)
  • [50] Understanding the Electrolytes of Lithium-Sulfur Batteries
    Angulakshmi, N.
    Dhanalakshmi, R. Baby
    Sathya, S.
    Ahn, Jou-Hyeon
    Stephan, A. Manuel
    BATTERIES & SUPERCAPS, 2021, 4 (07) : 1064 - 1095