Toward practical lithium-sulfur batteries

被引:6
|
作者
Qian, Weiwei [1 ,2 ]
Guo, Yawei [1 ,3 ]
Zuo, Weijing [1 ]
Wu, Xiangkun [1 ]
Zhang, Lan [1 ]
机构
[1] Inst Proc Engn, Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Henan Univ, Zhengzhou Inst Emerging Ind Technol, Longzihu New Energy Lab, Zhengzhou 450000, Peoples R China
[3] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
LI-S BATTERIES; ENERGY-DENSITY; ORGANOSULFUR COMPOUNDS; CATHODE MATERIAL; ELECTROLYTE; PERFORMANCE; SOLVENT; BINDER; CHEMISTRY; DESIGN;
D O I
10.1039/d4qm00180j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As one of the most promising energy-storage devices, lithium-sulfur batteries (LSBs) have been intensively studied and are currently on the edge of practical applications. Ampere hour (A h) level pouch cells are being prepared; however, they still face multiple challenges such as a low practical energy density, short cycle life, and underlying safety issues. The main reasons for these are due to the contradictions between the battery kinetics and electrolyte/sulfur (E/S) ratio, while the utilization of the metal lithium anode also raises possible dendrite concerns. In this review, we summarize the strategy to realize high-loading cathodes and a lean electrolyte for LSBs. In addition, solid-state LSBs are briefly discussed. Hopefully, this work may promote further advances in practical Li-S batteries. A cathode with an areal capacity of more than 5 mA h cm-2 is crucial for practical Li-S batteries. Besides, reducing the electrolyte weight ratio, in both liquid and solid-state Li-S batteries, is also important.
引用
收藏
页码:2556 / 2577
页数:22
相关论文
共 50 条
  • [31] Realizing high-energy density for practical lithium-sulfur batteries
    Fang, Ruopian
    Chen, Ke
    Sun, Zhenhua
    Hu, Guangjian
    Wang, Da-Wei
    Li, Feng
    INTERDISCIPLINARY MATERIALS, 2023, 2 (05): : 761 - 770
  • [32] Early Failure of Lithium-Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode
    Shi, Lili
    Anderson, Cassidy S.
    Mishra, Lubhani
    Qiao, Hong
    Canfield, Nathan
    Xu, Yaobin
    Wang, Chengqi
    Jang, TaeJin
    Yu, Zhaoxin
    Feng, Shuo
    Le, Phung M.
    Subramanian, Venkat R.
    Wang, Chongmin
    Liu, Jun
    Xiao, Jie
    Lu, Dongping
    ADVANCED SCIENCE, 2022, 9 (21)
  • [33] Encapsulating-polysulfide electrolyte: An answer to practical lithium-sulfur batteries
    Long, Hong-Li
    Peng, Hong-Jie
    CHINESE CHEMICAL LETTERS, 2023, 34 (03)
  • [34] Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries
    Hou, Li-Peng
    Zhang, Xue-Qiang
    Li, Bo-Quan
    Zhang, Qiang
    MATERIALS TODAY, 2021, 45 : 62 - 76
  • [35] MXenes in sulfur cathodes for lithium-sulfur batteries
    Wong, Andrew Jun Yao
    Lieu, Wei Ying
    Yang, Hui Ying
    Seh, Zhi Wei
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (22) : 3890 - 3905
  • [36] Sulfur polymers for stable lithium-sulfur batteries
    Preefer, Molleigh
    Oschmann, Bernd
    Seshadri, Ram
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [37] Sulfur Composite Cathode for Lithium-Sulfur Batteries
    Miao Lixiao
    Wang Weikun
    Wang Mengjia
    Duan Bochao
    Yang Yusheng
    Wang Anbang
    PROGRESS IN CHEMISTRY, 2013, 25 (11) : 1867 - 1875
  • [38] Toward a molecular level understanding of electrochemical interfaces in lithium-sulfur batteries
    Helms, Brett
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [39] Investigation on the Necessity of Low Rates Activation toward Lithium-Sulfur Batteries
    Li, Chen
    Wang, Su
    Wang, Zhaokun
    Li, Zuohang
    Zhang, Chenchen
    Ma, Yue
    Shi, Xixi
    Zhang, Hongzhou
    Song, Dawei
    Zhang, Lianqi
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (04)
  • [40] Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries
    Jiang, Zhipeng
    Guo, Hui-Juan
    Zeng, Ziqi
    Han, Zhilong
    Hu, Wei
    Wen, Rui
    Xie, Jia
    ACS NANO, 2020, 14 (10) : 13784 - 13793