Toward practical lithium-sulfur batteries

被引:6
|
作者
Qian, Weiwei [1 ,2 ]
Guo, Yawei [1 ,3 ]
Zuo, Weijing [1 ]
Wu, Xiangkun [1 ]
Zhang, Lan [1 ]
机构
[1] Inst Proc Engn, Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Henan Univ, Zhengzhou Inst Emerging Ind Technol, Longzihu New Energy Lab, Zhengzhou 450000, Peoples R China
[3] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
LI-S BATTERIES; ENERGY-DENSITY; ORGANOSULFUR COMPOUNDS; CATHODE MATERIAL; ELECTROLYTE; PERFORMANCE; SOLVENT; BINDER; CHEMISTRY; DESIGN;
D O I
10.1039/d4qm00180j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As one of the most promising energy-storage devices, lithium-sulfur batteries (LSBs) have been intensively studied and are currently on the edge of practical applications. Ampere hour (A h) level pouch cells are being prepared; however, they still face multiple challenges such as a low practical energy density, short cycle life, and underlying safety issues. The main reasons for these are due to the contradictions between the battery kinetics and electrolyte/sulfur (E/S) ratio, while the utilization of the metal lithium anode also raises possible dendrite concerns. In this review, we summarize the strategy to realize high-loading cathodes and a lean electrolyte for LSBs. In addition, solid-state LSBs are briefly discussed. Hopefully, this work may promote further advances in practical Li-S batteries. A cathode with an areal capacity of more than 5 mA h cm-2 is crucial for practical Li-S batteries. Besides, reducing the electrolyte weight ratio, in both liquid and solid-state Li-S batteries, is also important.
引用
收藏
页码:2556 / 2577
页数:22
相关论文
共 50 条
  • [21] Strategies toward High-Loading Lithium-Sulfur Batteries
    Wang, Tao
    He, Jiarui
    Cheng, Xin-Bing
    Zhu, Jian
    Lu, Bingan
    Wu, Yuping
    ACS ENERGY LETTERS, 2023, 8 (01) : 116 - 150
  • [22] Scientific and technological challenges toward application of lithium-sulfur batteries
    Yin, Ya-Xia
    Yao, Hu-Rong
    Guo, Yu-Guo
    CHINESE PHYSICS B, 2016, 25 (01)
  • [23] A Permselective Coating Protects Lithium Anode toward a Practical Lithium-Sulfur Battery
    Han, Zhiyuan
    Ren, Hong-Rui
    Huang, Zhijia
    Zhang, Yunbo
    Gu, Sichen
    Zhang, Chen
    Liu, Wenhua
    Yang, Jinlong
    Zhou, Guangmin
    Yang, Quan-Hong
    Lv, Wei
    ACS NANO, 2023, 17 (05) : 4453 - 4462
  • [24] Catalysis in Lithium-Sulfur Batteries
    Pan, Fusheng
    Yao, Yuan
    Sun, Jie
    PROGRESS IN CHEMISTRY, 2021, 33 (03) : 442 - 461
  • [25] Electrocatalysts in lithium-sulfur batteries
    Wang, Shanying
    Wang, Ziwei
    Chen, Fangzheng
    Peng, Bo
    Xu, Jie
    Li, Junzhe
    Lv, Yaohui
    Kang, Qi
    Xia, Ailin
    Ma, Lianbo
    NANO RESEARCH, 2023, 16 (04) : 4438 - 4467
  • [26] Electrocatalysts in lithium-sulfur batteries
    Shanying Wang
    Ziwei Wang
    Fangzheng Chen
    Bo Peng
    Jie Xu
    Junzhe Li
    Yaohui Lv
    Qi Kang
    Ailin Xia
    Lianbo Ma
    Nano Research, 2023, 16 : 4438 - 4467
  • [27] Polymers in Lithium-Sulfur Batteries
    Zhang, Qing
    Huang, Qihua
    Hao, Shu-Meng
    Deng, Shuyi
    He, Qiming
    Lin, Zhiqun
    Yang, Yingkui
    ADVANCED SCIENCE, 2022, 9 (02)
  • [28] Cycling lithium-sulfur batteries
    Kolosnitsyn, VS
    Karaseva, EV
    Amineva, NA
    Batyrshina, GA
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2002, 38 (03) : 329 - 331
  • [29] Rechargeable Lithium-Sulfur Batteries
    Manthiram, Arumugam
    Fu, Yongzhu
    Chung, Sheng-Heng
    Zu, Chenxi
    Su, Yu-Sheng
    CHEMICAL REVIEWS, 2014, 114 (23) : 11751 - 11787
  • [30] Recent progress towards the diverse practical applications of Lithium-sulfur batteries
    Majid, Mahrima
    Deng, Zhiping
    Wang, Xiaolei
    NANO ENERGY, 2024, 132