Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach

被引:3
|
作者
Chen, Cun [1 ]
Han, Xiaoli [1 ]
Zhang, Yong [2 ]
Liaw, Peter K. [3 ]
Ren, Jingli [1 ]
机构
[1] Zhengzhou Univ, Henan Acad Big Data, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
High-entropy alloys; Phase prediction; Machine learning; Conditional generative adversarial networks; Sparrow search algorithm; Information fusion; SOLID-SOLUTION; MICROSTRUCTURE; DESIGN;
D O I
10.1016/j.commatsci.2024.112976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase design of high entropy alloys (HEAs) is an important issue since the phase structure affects the comprehensive properties of HEAs. Accurate prediction of phase classification can accelerate material design. In this paper, a new phase prediction framework is proposed using machine learning (ML) and an improved information fusion approach based on the Dempster-Shafer (DS) evidence theory. Considering that the classification results of different ML algorithms may conflict, and the traditional DS evidence theory cannot solve the problem of high conflict, we propose an improved information fusion approach based on the DS evidence theory. The basic probability assignment function is constructed using the ML algorithms. 761 HEAs samples are collected consisting of amorphous phase (AM), solid solution (SS), intermetallic compound (IM), and a mixture of SS and IM (SS + IM). For the small dataset of HEAs, we use a conditional generative adversarial network (CGAN) for data augmentation. Based on the enhanced dataset, the ML model is optimized by sparrow search algorithm (SSA), which can accelerate searching speed of model hyperparameters and improve the performance of the model. The results show that the proposed information fusion method performs better than several other existing techniques on the test set, and the prediction accuracy reaches 94.78 %. Meanwhile, the prediction accuracy of the proposed method is higher than that of the existing technology (93.17 %). It is proved that the proposed method can solve the high conflict problem effectively. Moreover, we present the interpretability analysis of the features by the Shapley additive explanations (SHAP) and the sensitivity matrix. A smaller atomic size difference delta (<6.6 %) is conducive to the formation of SS phase, while a larger delta (>6.6 %) is conducive to the formation of AM phase. A smaller enthalpy of mixing Delta H-mix tends to form AM phase. In binary and ternary alloy systems, IM phase can be extracted by the mixing enthalpy Delta S-mix < 10. In addition, we find that mean bulk modulus (K) and standard deviation of melting temperature (sigma(T)) are critical features to distinguish between SS and SS + IM.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Overview: recent studies of machine learning in phase prediction of high entropy alloys
    Yan, Yong-Gang
    Lu, Dan
    Wang, Kun
    TUNGSTEN, 2023, 5 (01) : 32 - 49
  • [42] Overview:recent studies of machine learning in phase prediction of high entropy alloys
    Yong-Gang Yan
    Dan Lu
    Kun Wang
    Tungsten, 2023, 5 (01) : 32 - 49
  • [43] Machine learning guided BCC or FCC phase prediction in high entropy alloys
    He, Zhongping
    Zhang, Huan
    Cheng, Hong
    Ge, Meiling
    Si, Tianyu
    Che, Lun
    Zheng, Kaiyuan
    Zeng, Lingrong
    Wang, Qingyuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 3477 - 3486
  • [44] Machine learning-driven insights into phase prediction for high entropy alloys
    Jain, Reliance
    Jain, Sandeep
    Dewangan, Sheetal Kumar
    Boriwal, Lokesh Kumar
    Samal, Sumanta
    Journal of Alloys and Metallurgical Systems, 2024, 8
  • [45] Overview: recent studies of machine learning in phase prediction of high entropy alloys
    Yong-Gang Yan
    Dan Lu
    Kun Wang
    Tungsten, 2023, 5 : 32 - 49
  • [46] Machine-learning synergy in high-entropy alloys: A review
    Elkatatny, Sally
    Abd-Elaziem, Walaa
    Sebaey, Tamer A.
    Darwish, Moustafa A.
    Hamada, Atef
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 3976 - 3997
  • [47] Descriptors for phase prediction of high entropy alloys using interpretable machine learning
    Zhao, Shang
    Yuan, Ruihao
    Liao, Weijie
    Zhao, Yatong
    Wang, Jun
    Li, Jinshan
    Lookman, Turab
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 2807 - 2819
  • [48] Accelerating phase prediction of refractory high entropy alloys via machine learning
    Qu, Nan
    Zhang, Yan
    Liu, Yong
    Liao, Mingqing
    Han, Tianyi
    Yang, Danni
    Lai, Zhonghong
    Zhu, Jingchuan
    Yu, Liang
    PHYSICA SCRIPTA, 2022, 97 (12)
  • [49] Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics
    Lin, Tianyu
    Wang, Ruolan
    Liu, Dazhi
    CRYSTALS, 2024, 14 (05)
  • [50] Machine learning-assisted prediction and interpretation of electrochemical corrosion behavior in high-entropy alloys
    Zou, Yun
    Qian, Jiahao
    Wang, Xu
    Li, Songlin
    Li, Yang
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244