Accelerating phase prediction of refractory high entropy alloys via machine learning

被引:7
|
作者
Qu, Nan [1 ]
Zhang, Yan [1 ]
Liu, Yong [1 ,2 ]
Liao, Mingqing [1 ]
Han, Tianyi [1 ]
Yang, Danni [1 ]
Lai, Zhonghong [1 ,3 ]
Zhu, Jingchuan [1 ,2 ]
Yu, Liang [4 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Ctr Anal & Measurement, Harbin 150001, Heilongjiang, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
refractory high entropy alloys; phase classification; machine learning; decision tree; PRINCIPAL ELEMENT ALLOYS; MECHANICAL-PROPERTIES; LOW-DENSITY; MICROSTRUCTURE;
D O I
10.1088/1402-4896/aca2f2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unique high-temperature properties of refractory high entropy alloys (HEAs) are mainly depended on their phase formation. Therefore, a new approach to predict the phase formation has to be proposed, in order to accelerate the development of refractory HEAs. Here, we use machine learning to build classifiers to predict the phase formation in refractory HEAs. Our dataset containing 271 data only consists of as-cast refractory HEAs data. We simplify the input parameters to element content, and refine the phase formation outputs into five classes. Decision tree has been employed to build our phase classifier, due to its great advantages in solving classification problem. Both training and test accuracy of phase formation prediction achieve 90% using our classifier. The five single phase prediction accuracies are above 97%. Our phase classifier performs effectively in multi-phases classification and prediction of refractory HEAs, and establishes a direct relation between compositions and refractory phase formation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, 5 (04) : 531 - 538
  • [2] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, 5 : 531 - 538
  • [3] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yan, Yong-Gang
    Wang, Kun
    TUNGSTEN, 2023, 5 (04) : 531 - 538
  • [4] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, (04) : 531 - 538
  • [5] Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys
    Zhao, Fengyuan
    Ye, Yicong
    Zhang, Zhouran
    Li, Yahao
    Wang, Jie
    Tang, Yu
    Li, Shun
    Bai, Shuxin
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2023, 52 (04): : 1192 - 1200
  • [6] Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys
    Zhao Fengyuan
    Ye Yicong
    Zhang Zhouran
    Li Yahao
    Wang Jie
    Tang Yu
    Li Shun
    Bai Shuxin
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (04) : 1192 - 1200
  • [7] Machine learning guided phase formation prediction of high entropy alloys
    Qu N.
    Liu Y.
    Zhang Y.
    Yang D.
    Han T.
    Liao M.
    Lai Z.
    Zhu J.
    Zhang L.
    Materials Today Communications, 2022, 32
  • [8] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [9] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [10] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192