Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach

被引:3
|
作者
Chen, Cun [1 ]
Han, Xiaoli [1 ]
Zhang, Yong [2 ]
Liaw, Peter K. [3 ]
Ren, Jingli [1 ]
机构
[1] Zhengzhou Univ, Henan Acad Big Data, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
High-entropy alloys; Phase prediction; Machine learning; Conditional generative adversarial networks; Sparrow search algorithm; Information fusion; SOLID-SOLUTION; MICROSTRUCTURE; DESIGN;
D O I
10.1016/j.commatsci.2024.112976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase design of high entropy alloys (HEAs) is an important issue since the phase structure affects the comprehensive properties of HEAs. Accurate prediction of phase classification can accelerate material design. In this paper, a new phase prediction framework is proposed using machine learning (ML) and an improved information fusion approach based on the Dempster-Shafer (DS) evidence theory. Considering that the classification results of different ML algorithms may conflict, and the traditional DS evidence theory cannot solve the problem of high conflict, we propose an improved information fusion approach based on the DS evidence theory. The basic probability assignment function is constructed using the ML algorithms. 761 HEAs samples are collected consisting of amorphous phase (AM), solid solution (SS), intermetallic compound (IM), and a mixture of SS and IM (SS + IM). For the small dataset of HEAs, we use a conditional generative adversarial network (CGAN) for data augmentation. Based on the enhanced dataset, the ML model is optimized by sparrow search algorithm (SSA), which can accelerate searching speed of model hyperparameters and improve the performance of the model. The results show that the proposed information fusion method performs better than several other existing techniques on the test set, and the prediction accuracy reaches 94.78 %. Meanwhile, the prediction accuracy of the proposed method is higher than that of the existing technology (93.17 %). It is proved that the proposed method can solve the high conflict problem effectively. Moreover, we present the interpretability analysis of the features by the Shapley additive explanations (SHAP) and the sensitivity matrix. A smaller atomic size difference delta (<6.6 %) is conducive to the formation of SS phase, while a larger delta (>6.6 %) is conducive to the formation of AM phase. A smaller enthalpy of mixing Delta H-mix tends to form AM phase. In binary and ternary alloy systems, IM phase can be extracted by the mixing enthalpy Delta S-mix < 10. In addition, we find that mean bulk modulus (K) and standard deviation of melting temperature (sigma(T)) are critical features to distinguish between SS and SS + IM.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases
    Onate, Angelo
    Sanhueza, Juan Pablo
    Zegpi, Diabb
    Tuninetti, Victor
    Ramirez, Jesus
    Medina, Carlos
    Melendrez, Manuel
    Rojas, David
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [32] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [33] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [34] Prediction of phases and mechanical properties of magnesium-based high-entropy alloys using machine learning
    Otieno, Robert
    Odhong, Edward, V
    Ondieki, Charles
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (10)
  • [35] Machine Learning Phase Prediction of Light-Weight High-Entropy Alloys Containing Aluminum, Magnesium, and Lithium
    Li, Shenglong
    Liu, Rui
    Yan, Hongwei
    Li, Zhihui
    Li, Yanan
    Li, Xiwu
    Zhang, Yongan
    Xiong, Baiqing
    METALS, 2024, 14 (04)
  • [36] Prediction of oxygen adsorption energy on TiZrNbMoAl high-entropy alloys: DFT and machine learning
    Gao, Zhongliang
    Wang, Linqing
    Tang, Lin
    Yan, Kangkai
    Wang, Junjun
    PHYSICA B-CONDENSED MATTER, 2025, 699
  • [37] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [38] Prediction of mechanical properties of high entropy alloys based on machine learning
    Gao, Tinghong
    Wu, Qingqing
    Chen, Lei
    Liang, Yongchao
    Han, Yunjie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [39] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [40] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    PROGRESS IN MATERIALS SCIENCE, 2023, 131