A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data

被引:3
|
作者
Sun, Yidi [1 ]
Kong, Lingling [1 ]
Huang, Jiayi [1 ]
Deng, Hongyan [1 ]
Bian, Xinling [1 ]
Li, Xingfeng [1 ]
Cui, Feifei [1 ]
Dou, Lijun [2 ]
Cao, Chen [3 ]
Zou, Quan [4 ,5 ]
Zhang, Zilong [1 ]
机构
[1] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Lerner Res Inst, Genom Med Inst, Cleveland, OH 44106 USA
[3] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 210029, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[5] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
ScRNA-seq; spatial transcriptomics; dimensionality reduction; clustering; GENES;
D O I
10.1093/bfgp/elae023
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, the application of single-cell transcriptomics and spatial transcriptomics analysis techniques has become increasingly widespread. Whether dealing with single-cell transcriptomic or spatial transcriptomic data, dimensionality reduction and clustering are indispensable. Both single-cell and spatial transcriptomic data are often high-dimensional, making the analysis and visualization of such data challenging. Through dimensionality reduction, it becomes possible to visualize the data in a lower-dimensional space, allowing for the observation of relationships and differences between cell subpopulations. Clustering enables the grouping of similar cells into the same cluster, aiding in the identification of distinct cell subpopulations and revealing cellular diversity, providing guidance for downstream analyses. In this review, we systematically summarized the most widely recognized algorithms employed for the dimensionality reduction and clustering analysis of single-cell transcriptomic and spatial transcriptomic data. This endeavor provides valuable insights and ideas that can contribute to the development of novel tools in this rapidly evolving field.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Hao, Minsheng
    Luo, Erpai
    Chen, Yixin
    Wu, Yanhong
    Li, Chen
    Chen, Sijie
    Gao, Haoxiang
    Bian, Haiyang
    Gu, Jin
    Wei, Lei
    Zhang, Xuegong
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [22] Spatial transcriptomics-aided localization for single-cell transcriptomics with STALocator
    Li, Shang
    Shen, Qunlun
    Zhang, Shihua
    CELL SYSTEMS, 2025, 16 (02)
  • [23] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Minsheng Hao
    Erpai Luo
    Yixin Chen
    Yanhong Wu
    Chen Li
    Sijie Chen
    Haoxiang Gao
    Haiyang Bian
    Jin Gu
    Lei Wei
    Xuegong Zhang
    Communications Biology, 7
  • [24] Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
    Amouzgar, Meelad
    Glass, David R.
    Baskar, Reema
    Averbukh, Inna
    Kimmey, Samuel C.
    Tsai, Albert G.
    Hartmann, Felix J.
    Bendall, Sean C.
    PATTERNS, 2022, 3 (08):
  • [25] Nonlinear dimensionality reduction based visualization of single-cell RNA sequencing data
    Yousuff, Mohamed
    Babu, Rajasekhara
    Rathinam, Anand
    JOURNAL OF ANALYTICAL SCIENCE AND TECHNOLOGY, 2024, 15 (01)
  • [26] Panoramic Manifold Projection (Panoramap) for Single-Cell Data Dimensionality Reduction and Visualization
    Wang, Yajuan
    Xu, Yongjie
    Zang, Zelin
    Wu, Lirong
    Li, Ziqing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (14)
  • [27] Nonlinear dimensionality reduction based visualization of single-cell RNA sequencing data
    Mohamed Yousuff
    Rajasekhara Babu
    Anand Rathinam
    Journal of Analytical Science and Technology, 15
  • [28] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [29] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    van den Brink, Susanne C.
    Alemany, Anna
    van Batenburg, Vincent
    Moris, Naomi
    Blotenburg, Marloes
    Vivie, Judith
    Baillie-Johnson, Peter
    Nichols, Jennifer
    Sonnen, Katharina F.
    Martinez Arias, Alfonso
    van Oudenaarden, Alexander
    NATURE, 2020, 582 (7812) : 405 - +
  • [30] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, Sanjay R.
    Regier, Mary C.
    Barkan, Eliza
    Franks, Jennifer M.
    Packer, Jonathan S.
    Grosjean, Parker
    Duran, Madeleine
    Saxton, Sarah
    Ladd, Jon J.
    Spielmann, Malte
    Lois, Carlos
    Lampe, Paul D.
    Shendure, Jay
    Stevens, Kelly R.
    Trapnell, Cole
    SCIENCE, 2021, 373 (6550) : 111 - +