A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data

被引:3
|
作者
Sun, Yidi [1 ]
Kong, Lingling [1 ]
Huang, Jiayi [1 ]
Deng, Hongyan [1 ]
Bian, Xinling [1 ]
Li, Xingfeng [1 ]
Cui, Feifei [1 ]
Dou, Lijun [2 ]
Cao, Chen [3 ]
Zou, Quan [4 ,5 ]
Zhang, Zilong [1 ]
机构
[1] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Lerner Res Inst, Genom Med Inst, Cleveland, OH 44106 USA
[3] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 210029, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[5] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
ScRNA-seq; spatial transcriptomics; dimensionality reduction; clustering; GENES;
D O I
10.1093/bfgp/elae023
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, the application of single-cell transcriptomics and spatial transcriptomics analysis techniques has become increasingly widespread. Whether dealing with single-cell transcriptomic or spatial transcriptomic data, dimensionality reduction and clustering are indispensable. Both single-cell and spatial transcriptomic data are often high-dimensional, making the analysis and visualization of such data challenging. Through dimensionality reduction, it becomes possible to visualize the data in a lower-dimensional space, allowing for the observation of relationships and differences between cell subpopulations. Clustering enables the grouping of similar cells into the same cluster, aiding in the identification of distinct cell subpopulations and revealing cellular diversity, providing guidance for downstream analyses. In this review, we systematically summarized the most widely recognized algorithms employed for the dimensionality reduction and clustering analysis of single-cell transcriptomic and spatial transcriptomic data. This endeavor provides valuable insights and ideas that can contribute to the development of novel tools in this rapidly evolving field.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
    Raimundo, Felix
    Vallot, Celine
    Vert, Jean-Philippe
    GENOME BIOLOGY, 2020, 21 (01)
  • [42] Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
    Felix Raimundo
    Celine Vallot
    Jean-Philippe Vert
    Genome Biology, 21
  • [43] Benchmarking spatial clustering methods with spatially resolved transcriptomics data
    Zhiyuan Yuan
    Fangyuan Zhao
    Senlin Lin
    Yu Zhao
    Jianhua Yao
    Yan Cui
    Xiao-Yong Zhang
    Yi Zhao
    Nature Methods, 2024, 21 : 712 - 722
  • [44] Benchmarking spatial clustering methods with spatially resolved transcriptomics data
    Yuan, Zhiyuan
    Zhao, Fangyuan
    Lin, Senlin
    Zhao, Yu
    Yao, Jianhua
    Cui, Yan
    Zhang, Xiao-Yong
    Zhao, Yi
    NATURE METHODS, 2024, 21 (04) : 712 - 722
  • [45] RNA visualization and single-cell transcriptomics: methods and applications
    Andrysik, Zdenek
    Donovan, Micah G.
    TRANSCRIPTION-AUSTIN, 2023, 14 (3-5): : 89 - 91
  • [46] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Frédéric Pont
    Juan Pablo Cerapio
    Pauline Gravelle
    Laetitia Ligat
    Carine Valle
    Emeline Sarot
    Marion Perrier
    Frédéric Lopez
    Camille Laurent
    Jean Jacques Fournié
    Marie Tosolini
    BMC Bioinformatics, 24
  • [47] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Pont, Frederic
    Cerapio, Juan Pablo
    Gravelle, Pauline
    Ligat, Laetitia
    Valle, Carine
    Sarot, Emeline
    Perrier, Marion
    Lopez, Frederic
    Laurent, Camille
    Fournie, Jean Jacques
    Tosolini, Marie
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [48] Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics
    Shekhar, Karthik
    Lapan, Sylvain W.
    Whitney, Irene E.
    Tran, Nicholas M.
    Macosko, Evan Z.
    Kowalczyk, Monika
    Adiconis, Xian
    Levin, Joshua Z.
    Nemesh, James
    Goldman, Melissa
    McCarroll, Steven A.
    Cepko, Constance L.
    Regev, Aviv
    Sanes, Joshua R.
    CELL, 2016, 166 (05) : 1308 - +
  • [49] Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics
    Shen, Xiaohan
    Zhao, Yichun
    Wang, Zhuo
    Shi, Qihui
    LAB ON A CHIP, 2022, 22 (24) : 4774 - 4791
  • [50] stDiff: a diffusion model for imputing spatial transcriptomics through single-cell transcriptomics
    Li, Kongming
    Li, Jiahao
    Tao, Yuhao
    Wang, Fei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)